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NotesonBasicRadiometryandBRDF Models

PeterShirley

1 Intr oduction

In thesenoteswe discussthe practicalissuesof measuringlight, an endeavor usually
calledradiometry, andthebasicsof BRDF models.Thesenotesarederived from the
draft for ComputerGraphicsunderprparationwith AK Peters.

Thetermsthatarisein radiometrymayat first seemstrangeandhave terminology
and notationthat may be hard to keepstraight. However, becauseradiometryis so
fundamentalto computergraphicsit is worthstudyingradiometryuntil it sinksin. This
chapteralsocoversphotometry, which takesradiometricquantitiesandscalesthemto
estimatehow much“useful” light is present.For example,agreenlight mayseemtwice
asbright asa blue light of thesamepower becausetheeye is moresensitive to green
light. Photometryattemptsto quantifysuchdistinctions.

Thereflective propertiesof a surfacecanbesummarizedusingtheBRDF.We then
discusssomeof the mostvisually importantaspectsof materialproperties,anda few
modelsthatareusefulin capturingthesepropertieswhile remainingfairly simple.

2 Radiometry

Althoughwecandefineradiometricunitsin many systems,weuseweusetheSI units.
Familiar SI units includethe familiar metric units of meter(� ) andgram(� ). Light
is fundamentallya propagating form of energy, so it is usefulto definethe ��� unit of
energy which is theJoule( � ).

2.1 Photons

To aid intuition, we will describeradiometryin termsof collectionsof largenumbers
of photons, andthis sectionestablisheswhat is meantby a photonon this context. For
thepurposesof thischapter, aphotonis aquantumof light thathasaposition,direction
of propagation, anda wavelength � . Somewhat strangely, the SI unit usedfor wave-
lengthis nanometer(� � ). This is mainly for historicalreasons,and �	� ��
 ������ � .
Anotherunit, theangstrom is sometimesused,andonenanometeris tenangstroms.A
photonalsohasa speed� that dependsonly on the refractive index � of the medium
it propagatesthrough. Sometimesthe frequency � 
 ����� is alsousedfor light. This
is convenientbecauseunlike � and � , � doesnot changewhenthephotonrefractsinto
a mediumwith a new refractive index. Another invariant is the amountof energy �
carriedby aphoton,which is givenby thefollowing relationship:

� 
�� � 
 � �
��� (1)
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where ��
�� � ��!�" �#� ��$	% �'& �)( is Plank’s Constant.Although thesequantitiescanbe
measuredany many unit systems,weuseSI unitswhenever possible.

2.2 SpectralEnergy

If we have a large collection of photons,their total energy * can be computedby
summingthe energy �,+ of eachphoton. A reasonablequestionto ask is “how is the
energy distributedacrosswavelengths?”An easyway to answerthis is to partitionthe
photonsinto bins, essentiallyhistogrammingthem. You would thenhave an energy
associatedwith aninterval. For example,you might countall theenergy between� 
- ���.� � and � 
/� ���.� � , andhave it turn out to be 10.2� andthis might be denoted
��0 - ��� � � �1��2 
 �#� � 3 . If we dividedthewavelengthinterval into two 50� � intervals,we
might find that ��0 - �1� �

-�- ��2 
 - � 3 and ��0 -1- � � � ���12 

- � � . This tells ustherewasa little

moreenergy in the shortwavelengthhalf of the interval 0 - �1� � � ����2 . If we divide into
25� � binswemightfind ��0 - ��� �

- 3 - 2 
43 � - andsoon. Thenicethingaboutthesystem
is thatit is straightforward.Thebadthing aboutit is thatthechoiceof theinterval size
determinesthenumber.

A morecommonlyusedsystemis to divide theenergy by thesizeof the interval.
Soinsteadof ��0 - ��� � � ���12 
 �#� � 3 wewouldhave:

*65�0 - ��� � � �1��2 

�#� � 3
�#�1� 
 � � � 3 �879� ��: �;(

This is nicebecausethesizeof theinterval hasmuchlessimpacton theoverall sizeof
thenumbers.An immediateideawould be to drive the interval size <=� to zero. This
would beawkwardbecausefor a sufficiently small <=� , *>5 will eitherbezeroor huge
dependingon whetherthereis a singlephotonor no photonin the interval. Thereare
two schoolsof thoughtto solve thatdilemma.Thefirst is to assumethat <=� is small,
but not so small that the quantumnatureof light comesinto play. The secondis to
assumethatthelight is acontinuumratherthanindividualphotons,soa truederivative? *@� ? � is appropriate.Both waysof thinking aboutit areappropriateandleadto the
samecomputationalmachinery. In practiceit seemsthat most peoplewho measure
light prefersmallbut finite intervalsbecausethat is what they canmeasurein the lab.
Most peoplethat do theoryor computationprefer infinitesimal intervals becausethat
makesthemachineryof calculusavailable.

The quantity *>5 is called spectral energy and is an intensivequantity. This is
opposedto anextensivequantitysuchasenergy, length,or mass.Intensive quantities
canbethoughtof asdensityfunctionsthattell you thedensityof anextensive quantity
ataninfinitesimalpoint. For example,theenergy * ataspecificwavelengthis probably
zero,but thespectralenergy (energy density) *65 is a meaningfulquantity. A probably
morefamiliar exampleis that the populationof a countrymay be 25 million, but the
populationat a point in that countryis meaningless.However, thepopulationdensity
measuredin peoplepersquaremeteris meaningfulprovided it is measuredover large
enoughareas.Much like with photons,populationdensityworks bestif we pretend
thatwe canview populationasa continuumwherepopulationdensitynever becomes
granularevenwhentheareais small.

We will follow theconventionof graphicswherespectralenergy is almostalways
used,andenergy is rarelyused.Thisresultsin aproliferationof � subscriptsif “proper”
notationis used.Insteadwewill dropthesubscriptanduse* to denotespectralenergy.
Thiscanresultin someconfusionwhenpeopleoutsideof graphicsreadgraphicspapers,
sobeawareof this standardsissue.Your intuition aboutspectralpower might beaided
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by imagininga measurementdevice with anenergy sensorthatmeasureslight energy
� . If youplaceacoloredfilter in front of thesensorthatallowsonly light in theinterval
0A�CBD<=��� 3 � �FE�<=��� 3 2 , thenthespectralpowerat � wouldbe * 
 <=�.�G<=� .

2.3 Power

Its usefulto estimatea rateof energy productionfor light sources.This rateis called
powerandis measuredin Watts H which is anothernamefor Joulesper second. This
is easiestto understandin a steadystate, but becausepower is anintensive quantity(a
densityover time) it is well definedevenwhenenergy productionis varyingover time.
Theunitsof power maybemorefamiliar becauseof lights, e.g. a 100watt light bulb.
Suchbulbs draw approximately100� of energy eachsecond.The power of the light
producedwill belower than �#��� H becauseof heatloss,etc.,but thatcanstill beused
to help intuition. For example,we cangeta feel for how many photonsareproduced
in secondby a �#�1� H light. Supposetheaveragephotonproducedhastheenergy of a
� 
 - ���.� � photon.Thefrequency of suchaphotonis:

� 
 �
� 
 !I" �#��J � & �)(- �1� " �#� �K� �


4�I" �#� (L% & �)( �

Theenergy of thatphotonis � �NM�O " �#�P�;(Q�R� . Thatmeansastaggering�#��S,T photons
areproducedeachsecondevenif thebulb is notveryefficient. Thisexplainswhy simu-
latingacamerawith a fastshutterspeedanddirectlysimulatedphotonsis aninefficient
choicefor producingimages.

Likewith energy, wearereallyinterestedin spectral powermeasuredin HU7V� �4: �)( .
Again, althoughthe formal standardsymbol for spectralpower is WX5 , we will use W
with no subscriptfor convenienceandconsistency with mostof thegraphicsliterature.
Onethingto noteis thatthespectralpowerfor alight sourceis usuallyasmallernumber
than the power. For example, if a light emits a power of �#����H evenly distributed
over wavelengthsO����.� � to Y��1�.� � , thenthespectralpower will be ���� H4�GO1���.� �Z

� 3 - HU79� ��: �;( . This is somethingto keepin mind if you setthespectralpower of light
sourcesby handfor debuggingpurposes.

The measurementdevice for spectralenergy in the last sectioncould be modified
by takinga readingwith a shutterthatis openfor a time interval <\[ centeredat time [ .
Thespectralpowerwould thenbe <=*]�^7_<\[`<=� : .

2.4 Irradiance

The quantity irr adiancearisesnaturallyif you askthe question“how muchlight hits
this point?”. Of coursetheansweris “none” andagain we mustusea densityfunction.
If thepoint is on a surface,it is naturalto useareato defineour densityfunction. We
modify thedevice from the lastsectionto have a finite <=a areasensorthat is smaller
thanthelight field beingmeasured.Thespectralirradianceb would just bethepower
perunit area<�Wc�G<=a . Fully expandedthis is:

W 
 <=�
<=a4<\[`<=� (2)

Thus the full units of irradianceare � � ��S�&1�)(d7V� ��: �)( . Note that it is not � � �K$R& .
This is a perversity introducedby using squaremetersfor areaand nanometersfor
wavelength,but it is standardradiometry.
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Figure 2 The signal a radiance detector receives does not depend on distance to the surface being

measured. This figure assumes the detectors are pointing at areas on the surface that are emitting

light in the same way.

Whenthe light is leaving a surface,e.g.,whenit is reflected,thesamequantityas
irradianceis calledradiantexitance e . It is usefulto have differentwordsfor incident
andexitant light becausethesamepointhaspotentiallydifferentirradianceandradiant
exitance.

2.5 Radiance∆σ

∆A counted

not counted

Figure 1 By adding a blin-
der that shows only a small
solid angle fhg to the irradi-
ance detector, we measure
radiance.

Althoughradiantexitancetells ushow muchlight is arriving at a point, it tells uslittle
aboutthe directionthat light comesfrom. To measuresomethinganalogousto what
we seewith our eyes,we needto beableto associate“how muchlight” with a specific
direction. We canimaginea simpledevice to measuresucha quantity(Figure1). We
usea small irradiancemeterandaddon conical“baffler” which limits light hitting the
counterto a rangeof angleswith solidangle<=i . Theresponseof thedetectoris thus:

response
 <=b
<=i
 <=�
<=a4<=iC<\['<=�

This is thespectralradianceof light travelling in space.Again,wewill dropthe“spec-
tral” in ourdiscussionandassumethatit is implicit.

Radianceis what we are usually computingin graphicsprograms. A wonderful
propertyof radianceis that it doesnot vary alonga line in space.To seewhy this is
true,examinethetwo radiancebothlookingatasurfaceasshown in Figure2. Assume
the lines the detectorsare looking along are closeenoughtogetherthat the surface
is emitting/reflectinglight “the same”in both of the areasbeingmeasured.Because
theareaof thesurfacebeingsampledis proportionalto squareddistance,andbecause
the light reachingthe detectoris inversely proportionalto squareddistance,the two
detectorsshouldhave thesamereading.

It is usefulto measurethe radiancehitting a surface. We canthink of placingthe
conebaffler from the radiancedetectorat a point on the surfaceand measuringthe
irradianceb on the surfaceoriginatingfrom directionsin the cone(Figure3). Note
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thatthesurface“detector” is not alignedwith thecone.For this reasonwe needto add
acosinecorrectiontermto ourdefinitionof radiance:

response
 <=b
<=ikjdl1m)n
 <=�
<=aojdl1m)nh<=iC<\[X<=� ∆A

θ

∆A/cosθ

Figure 3 The irradiance at
the surface as masked by
the cone is smaller than
that measured at the detec-
tor by a cosine factor.

As with irradianceandradiantexitance,it is usefulto distinguishbetweenradiance
incidentat a point on a surfaceandexitant from that point. Termsfor theseconcepts
sometimesusedin the graphicsliteraturearesurfaceradiance prq for the radianceof
(leaving) a surface,andfield radiancefor theradianceincidentat a surface.Both have
thecosinetermbecausethey bothcorrespondto theconfigurationin Figure3:

prq 
 <=e
<=ikjGl�m)n

prs 
 <=b
<=ikjGl�m)n

2.5.1 Radianceand Other Radiometric Quantities

If wehaveasurfacewhosefield radianceis prs , thenwecanderiveall of theotherradio-
metricquantitiesfrom it. This is onereasonradianceis consideredthe“fundamental”
radiometricquantity. For example,theirradianceis:

b 

all t prsP7Vu

: jGl�m)n ? i
This formulahasseveralnotationalconventionsthatarecommonin graphicsthatmake
suchformulaeopaqueto readersnot familiar with them(Figure4). First, u is an in-
cidentdirection,andcanbe thoughtof asa unit vector, a direction,or a 7vn �

w : pair in
sphericalcoordinateswith respectto thesurfacenormal.Thedirectionhasadifferential
solid angle

? u associatedwith it. The field radianceis potentiallydifferentfor every
direction,sowewrite it asa function px7Vu : .

θ
n d

y
σ

k

Figure 4 The direction z
has a differential solid an-
gle {Gg associated with it.

As anexample,wecancomputetheirradianceb atasurfacethathasconstantfield
radiancep;s in all directions.To integrate,weuseaclassicsphericalcoordinatesystem,
andrecallthatthedifferentialsolidangleis

? i=|�m	}9~@n ? n ?^w
sotheirradianceis:

b 
 S#�
��� T

��
�`� T

prs�m	}9~@n ? n ?^w

�� prs

This relationshowsusourfirst occurrenceof apotentiallysurprisingconstant� . These
factorsof � occur frequently in radiometryand are an artifact of how we choseto
measuresolid angles,i.e., the areaof a unit sphereis a multiple of � ratherthan a
multipleof one.

Similarly, wecanfind thepowerhittingasurfaceby integratingtheirradianceacross
thesurfacearea:

W 

all � b�7�� : ? a �
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light

detector

ki ko

Figure 5 A simple measurement device for directional reflectance. The positions of light and de-

tector are moved to each possible pair of directions.

where � is a point on the surface,and
? a is the differentialareaassociatedwith that

point. Notethatwe don’t have specialtermsof symbolsfor incomingversusoutgoing
power. That distinction doesnot seemto comeup enoughto have encouragedthe
distinction.

2.6 BRDF

Becausewe areinterestedin surfaceappearance,we would like to characterizehow a
surfacereflectslight. At anintuitive level, for any incidentlight comingfrom direction� + , thereis somefraction scatteredin a small solid anglenearoutgoingdirection

���
.

Therearemany wayswecouldformalizesuchaconcept,andnotsurprisinglythestan-
dardway to do sois inspiredby building a simplemeasurementdevice. Sucha device
is shown in Figure5, wherea small light sourceis positionedin direction

� + asseen
from apointonasurface,andadetectoris placedin direction

� �
. For everydirectional

pair 7 � + �
��� : we takea readingwith thedetector.

Now we just have to decidehow to measurethe strengthof the light sourceand
make our reflectionfunctionindependentof this strength.For example,if we replaced
the light with a brighterlight, we would not want to think of thesurfaceasreflecting
light differently. We could placea radiancemeterat the point being illuminated to
measurethe light. However, for this to getanaccuratereadingthatwould not depend
on the <=i of thedetector, wewouldneedthelight to subtendasolidanglebiggerthan
<=i . Unfortunately, themeasurementtakenby our roving radiancedetectorin direction���

will alsocountlight thatcomesfrom pointsoutsidethenew detector’scone.Sothis
doesnot seemlikeapracticalsolution.

Alternatively, we canplacean irradiancemeterat the point on the surfacebeing
measured.This will take a readingthat doesnot dependstronglyon subtletiesof the
light sourcegeometry. Thissuggestscharacterizingreflectanceasa ratio:

��
 p;q
b

wherethis fraction � will vary with incidentandexitant directions
� + and

���
, b is the

irradiancefor light position
� + and prq is thesurfaceradiancemeasuredin direction

���
.

If we take sucha measurementfor all directionpairs,we endup with a 4D function� 7 � + �
��� : . This function is called the bidirectional reflectancedistribution function
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(BRDF).TheBRDFis all weneedto know to characterizethedirectionalpropertiesof
how asurfacereflectslight.

2.6.1 Dir ectionalHemisphericalReflectance

GivenaBRDFit is straightforwardto ask“what fractionof incidentlight is reflected?”
However, the answeris not so easy;the fraction reflecteddependson the directional
distribution of incominglight. For this reasonwe typically only seta fractionreflected
for a fixed incidentdirection

� + . This fraction is calledthe directionalhemispherical
reflectance. This fraction, �]7 � + : is defined:

�@7 � + :8
 power in all outgoingdirections
���

power in abeamfrom direction
� + �

Note that this quantity is betweenzero and one for reasonsof energy conservation.
If we allow the incident WX+ power to hit on a small area <=a , then the irradianceis
WX+��G<=a . Also, theratio of theincomingpower is just theratio of theradianceexitance
to irradiance:

�]7 � + :X
 e
b

Theradiancein a particulardirectionresultingfrom this power is by thedefinitionof
BRDF:

px7 ��� :8
 b � 7 � + �
��� :


 WX+
<=a

And from thedefinitionof radiancewealsohave:

px7 ��� :X
 <=e
<=i � jGl�m)n �

Where e is theradiantexitanceof thesmallpatchgoing in direction
���

. Using these
two definitionsfor radianceweget:

b � 7 � + �
��� :X
 <=e

<=i � jdl1m)n �
Rearrangingtermsweget:

<=e
b 
�� 7 � + �

��� : <=i � jGl�m)n �

This is just the small contribution to e]��b that is reflectednearthe particular
���

. To
find thetotal �]7 � + : wesumover all outgoing

���
. In integral form this is:

�@7 � + :8

all ���

� 7 � + �
��� : jGl�m)n ��? i �

2.6.2 Ideal diffuse BRDF

An idealizeddiffuse surface is called Lambertian. Suchsurfacesare impossiblein
naturefor thermodynamicreasons,but they do mathematicallyconserve energy. The
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lambertianBRDF has� equalto a constantfor all angles.This meansthesurfacewill
have thesameradiancefor all viewing angles,andthis radiancewill beproportionalto
theirradiance.

If wecompute�]7 � + :	: for aaLambertiansurfacewith �=
�� weget:

�]7VuX+ :X

all ���

� jGl�m)n ��? i �


 S#�
� � � T

�
� � � T

� jdl�m�n � m	}9~@n ��? n ��?^w �

��c�

Thusfor a perfectlyreflectingLambertiansurface( � 
 � ) we have ��
 ��� � andfor a
Lambertiansurfacewhose�@7 � + :X
�� wehave:

� 7 � + �
��� :8
 �

�
This is anotherexamplewherethe useof steradiansfor solid angledeterminesthe
normalizingconstantandthusintroducesfactorsof � .

3 Transport Equation

With thedefinitionof BRDF, we candescribetheradianceof a surfacein termsof the
incomingradiancefrom all differentdirections.Becausein computergraphicswe can
useidealizedmathematicsthat might be impracticalto instantiatein the lab, we can
alsowrite theBRDF in termsof radianceonly. If we take a smallpartof thelight with
solid angle<=i�+ with radiancepr+ , and“measure”therefectedradiancein direction

���
dueto this smallpieceof thelight, we cancomputea BRDF. Theirradiancedueto the
smallpieceof light is b 
 pr+.jGl�m)n�+Q<=i�+ . ThustheBRDF is:

��
 p �
p;+.jdl1m)n�+Q<=i�+ �

That form canbeusefulin somesituations.Rearrangingtermswe canwrite down the
partof theradiancethatis dueto light comingfrom direction

� + :
<=p � 
�� 7 � + �

��� : pr+.jGl�m)n�+Q<=i�+
If thereis light comingfrom many directionspr+	7 � + : wecansumall of them.In integral
form, with notationfor surfaceandfield radiancethis is:

prq.7 ��� :X

all �.�

� 7 � + �
��� : prs�7 � + : jdl�m)n#+ ? i�+

Thisequationis oftencalledtherenderingequationin computergraphics.
Sometimesit is usefulto write thetransportequationin termsof surfaceradiances

only. Note that in a closedenvironmentthe field radiancep;s�7 � + : comesfrom some
surfacewith surfaceradianceprq17`B � + :X
 prs�7 � + : (Figure6). Thesolidanglesubtended
by thepoint � � in theFigureis givenby:

<=i + 
 <=a��djGl�m)nG�  �¡B�� �   S
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where <=a � the the areawe associatewith � � . Substitutingfor <=i�+ in termsof <=a �
suggeststhefollowing transportequation:

prq17¢� �
��� :X


all � ’ visible to �
� 7 � + �

��� : prq17¢� � � �¡B�� � : jGl�m)n�+.jGl�m)n �  �oB4� �   S
Notethatweareusinganon-normalizedvector �£B��P� to indicatethedirectionfrom �P�
to � . Also notethatwearewriting p;q asa functionof positionanddirection.

Theonly problemwith thisnew transportequationis thatthedomainof integration
is awkward. If we introducea visibility function we cantradeoff complexity in the
domainwith complexity in theintegrand:

prq.7�� �
��� :X


all � ’

� 7 � + �
��� : prq.7��P� � �oB4� � :V¤ 7�� � �P� : jGl�m)n�+.jGl�m)n��  �oB4� �   S

where

¤ 7�� � � � :X

� if � and � ’ aremutuallyvisible

� otherwise x

x’

n

θi

θ’

ki

−ki

n’

Figure 6 The light coming
into one point comes from
another point.4 Photometry

For everyspectralradiometricquantitythereis arelatedphotometricquantitythatmea-
sureshow much of that quantity is “useful” to a humanobserver. Given a spectral
radiometricquantity �d¥�7�� : , therelatedphotometricquantity �d¦ is:

�G¦ 
4� Y !�§ � �1H J T,T#¨1©
5 � $ J T#¨1©

ª« 7�� : �d¥�7�� : ? � �
where

ª« is the luminousefficiencyfunctionof thehumanvisualsystem.This function
is zero outsidethe limits of integration above, so the limits could be � and ¬ and
�G¦ would not change.The leadingconstantis to make the definition consistentwith
historicalabsolutephotometricquantities.

Theluminousefficiency functionquantifiesthehumanvisualsystemis not equally
sensitive to all wavelengths(Figure7). For wavelengthsbelow 380nm(theultraviolet
range ) thelight is notvisible to humansandthushasa

ª« valueof zero.From380nmit
graduallyincreasesuntil � 
 -1-�- � � whereit peaks.This is a puregreenlight. Then
it graduallydecreasesuntil it reachestheboundaryof theinfraredregionat800nm.

y _

λ
®

3
¯

80 800555

Figure 7 The luminous
efficiency function versus
wavelength (nm).

Thephotometricquantitythatis mostcommonlyusedin graphicsis luminance, the
photometricanalogof radiance:

° 
4� Y !�§ � ��H J T,T#¨1©
5 � $ J T#¨1©

ª« 7v� : px7�� : ? � �

Using the symbol
°

for luminanceis from colorimetry. Most fields usethe symbol
p , but we will not follow that conventionbecauseit is to confusingto use p for both
luminanceandspectralradiance.Luminancegivesonea generalideaof how “bright”
somethingis independentof theadaptationof theviewer. Notethattheblackpaperun-
dernoondayis subjectively darker thanthelower luminancewhite paperundermoon-
light, soreadingtoo muchinto luminanceis dangerous,but it is a very usefulquantity
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for gettinga quantitative feel for relative perceivablelight output.Theunits § � stands
for lumens.Notethatmostlight bulbsareratedin termsof thepower they consumein
Watts,andtheusefullight they producein lumens.More efficient bulbsproducemore
of their light where

ª« is large and thusproducemore lumensper Watt. A “perfect”
light would convert all power into

-�-�- � � light, andwould produce683 lumensper
Watt. Theunitsof luminancearethus 7 § � ��H : 7�H4�^7 � SR& �P:	:8
 § � �^7 � SR& ��: . Thequan-
tity onelumenpersteradianis definedto beonecandela( � ? ), so luminanceis usually
describedin units � ? � � S .

5 Real-world Materials

Many realmaterialshave a visible structureat normalviewing distances.For example,
mostcarpetshave easilyvisible pile thatcontributesto appearance.For our purposes,
suchstructurearenot partof thematerialpropertybut areinsteadpartof thegeomet-
ric model. Structurewhosedetailsare invisible at normalviewing distancesthat do
determinemacroscopicmaterialappearancearepart of thematerialproperty. For ex-
ample,thefibersin paperhaveacomplex appearanceundermagnification,but they are
blurredtogetherinto anhomogeneousappearancewhenviewedat arm’s length. This
distinctionbetweenmicrostructurethatis foldedinto BRDF is somewhatarbitraryand
dependson what onedefinesas“normal” viewing distanceandvisual acuity, but the
distinctionhasprovenquiteusefulin practice.

glass

5%

95%

90%

glass

90%

10%
1%

Figure 9 The amount of
light reflected and transmit-
ted by glass varies with an-
gle.

R
(1-R)2

R(1-R)2

R2(1-R)2

R4(1-R)2
R3(1-R)2

Figure 10 Light is repeat-
edly reflected and refracted
by glass, with the fractions
of energy shown.

In this sectionwe definesomecategoriesof materials. Later in the chapterwe
presentreflectionmodelsthattargeteachtypeof material.In thenotesat theendof the
chaptersomemodelsthataccountfor moreexotic materialsarealsodiscussed.

5.1 SmoothDielectricsand Metals

Dielectricsareclearmaterialsthat refract light. Metalsreflectandrefract light much
likedielectrics,but they absorblight veryveryquickly. Thusonly verythin metalsheets
aretransparentat all, e.g.,the thin gold plating on someglassobjects. For a smooth
materialthereareonly two importantproperties:

1. How muchlight is reflectedateachincidentangleandwavelength,

2. What fraction of light is absorbedasit travels throughthe materialfor a given
distanceandwavelength.

Theamountof light transmittedis whatever is notreflectedbecauseof energy conserva-
tion. For a metal,in practice,we canassumeall thelight is immediatelyabsorbed.For
a dielectric,thefractionis determinedby theconstantusedin Beer’s Law Theamount
of light reflectedis determinedby theFresnelEquations. Theseequationsarestraight-
forward but cumbersome.We will show an approximationlater in the chapterthat is
enoughfor almostall graphicsapplications.Themaineffectof theFresnelEquationsis
to increasethereflectanceastheincidentangleincreases,particularlyneargrazingan-
glesasshown in Figure8. Thiseffectworksfor transmittedlight aswell. This is shown
diagrammaticallyin Figure9. Note that the light is repeatedlyreflectedandrefracted
asshown in Figure10. Usuallyonly oneor two of thereflectedimagesis easilyvisible.
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Figure 8 The way the glass reflects and transmits light is shown by the light patterns on the base

plane. On the left the light hits near normal incidence and most light is transmitted, so the shadow

is light. On the right the angle is more acute so the reflected light paints the base plane. Because

this light is reflected, there is less light transmitted and the shadow is dark.

5.2 RoughSurfaces

If a metalor dielectricis roughenedat a small scale,but not so small that diffraction
occurs,thenwe can think of it asa surfacewith microfacets. Suchsurfacesbehave
specularlyat a small scale,but viewed at a distanceseemto spreadthe light out in
a distribution. For a metal this could be brushedsteel,or the “cloudy” sideof most
aluminumfoil.

For dielectrics,suchasasheetof glass,scratchesor otherirregularsurfacefeatures
makestheglassblur thereflectedandtransmittedimageswe canusuallyseeclearly. If
the surfaceif heavily scratchedwe call it translucentratherthantransparent.This is
a somewhat arbitrarydistinction,but it is usuallyclearwhetherwe would considerit
translucentor transparent.

5.3 Diffuse Materials

A materialis diffuseif it is matte,i.e.,notshiny. Many surfacesweseearediffuse,such
asmoststones,paper, andunfinishedwood. To a first approximation,diffusesurfaces
canbeapproximatedwith a Lambertian(constant)BRDF. Realdiffusematerialsusu-
ally becomesomewhatspecularfor grazingangles.This is a subtleeffect, but canbe
importantfor realism.

5.4 TranslucentMaterials

Many thin objectssuchasleavesandpaperbothtransmitandreflectlight diffusely. For
all practicalpurposesnoclearimageis transmittedby theseobjects.Thesesurfacescan
adda hueshift to thetransmittedlight. For example,redpaperis redbecauseit filters
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Figure 12 Layered surfaces for two viewing angles. Note that the specular coefficient increases for

acute viewing angles. Also note that the diffuse component fades in tandem.

outnon-redlight for light thatpenetratesashortdistanceinto thepaperandthenscatters
backout. Thepaperalsotransmitslight with a redhuebecausethesamemechanisms
apply, but thetransmittedlight makesit all theway throughthepaper. Oneimplication
of this is thatthetransmittedcoefficient shouldbethesamein bothdirections.

5.5 LayeredMaterials

Many surfacesarecomposedof “layers” or aredielectricswith embeddedparticlesthat
give it a diffuseproperty. Thesurfaceof suchmaterialsreflectsspecularlyasshown in
Figure11andthusobeys theFresnelequations.diffuse substrate

polish

diffuse
specular

Figure 11 Light hitting a
layered surface and be re-
flected specularly or it can
be transmitted and then
scatter diffusely off the sub-
strate.

An exampleof a layeredsurfacearethe glazedceramictiles shown in Figure12.
Notethatthediffusecomponentalsois attenuatedwith anglebecausetheFresnelequa-
tionsmakereflectionbackinto thesurfaceastheangleincreasesasshown in Figure13.

90% 75%
50%
10%

Figure 13 The light scat-
tered by the substrate is
less and less likely to make
it out of the surface as the
angle increases.

6 Implementing ReflectionModels

Whenwe want to do a morephysically-basedrenderingthanis donewith point light
sourcesandPhong-like models,our basicgoal is to implementa BRDF modelasde-
scribedin Section2.6. Unfortunately, realBRDFsaretypically quitecomplicatedand
cannotbe deducedfrom first principles. Insteadthey must either be measuredand
useddirectly approximatedfrom raw data,or they mustbe crudelyapproximatedin
anempiricalfashion.Thelatterempiricalstrategy is what is usuallydone,andthede-
velopmentof approximatemodelsis still an areaof research.This sectiondiscusses
severaldesirablepropertiesof suchempiricalmodels.

First, thereare two propertiesof a BRDF model that physical constraintsimply.
First is energy conservation.

for all
� + , �]7 � + :8


all ���
� 7 � + �

��� : jGl�m)n ��? i �²± � �

This justsaysthatif yousendabeamof light atasurfacefrom any direction
� + thenthe

total amountof light reflectedover all directionswill beat mostthe incidentamount.
Thesecondphysicalpropertyweexpectall BRDFsto have is reciprocity:

for all
� + , ��� , � 7 � + �

��� :8
�� 7 ��� �
� + :
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Second,we wanta clearseparationbetweendiffuseandspecularcomponents.The
reasonfor this is that althoughthereis a mathematicallycleandelta function formu-
lation for ideal specularcomponents,deltafunctionsmustbe implementedasspecial
casesin practice.Suchspecialcasesareonly practicalif theBRDFmodelclearlyindi-
cateswhatis specularandwhatis diffuse.

Third, we would like intuitive parameters.For example,one reasonthe Phong
model hasenjoyed suchlongevity is that its diffuse constantand exponentare both
clearlyrelatedto theintuitive propertiesof thesurface,namelysurfacecolor andhigh-
light size.

Finally, wewouldliketheBRDFfunctionto beamenableto MonteCarlosampling.
Recallthatanintegral canbesampledby ³ randompoints ´�+kµ·¶ where¶ is defined
with thesamemeasureastheintegral:

��7V´ : ?�¸ M �
³

¹
º � (

�)7V´ º :
¶»7V´ º : �

Recallfrom Section3 thatthesurfaceradiancein direction
���

in adirectionis givenby
a transportequation:

p q 7 � � :X

all �.�

� 7 � + �
� � : p s 7 � + : jdl�m)n + ? i +

If we sampledirectionswith pdf ¶»7 � + : thenwe canapproximatethesurfaceradiance
with samples:

p;q17 ��� : M �
³

¹
º � (

� 7 � º �
��� : prs�7 � º : jdl1m)n º
¶»7 � º : �

This approximationwill converge for any ¶ that is non-zerowherever the integrandis
non-zero.However, it will only convergewell if thereis nowherewheretheintegrandis
very largerelativeto ¶ . Ideally, ¶»7 � : shouldbeapproximatelyshapedliketheintegrand� 7 � º �

��� : prs�7 � º : jGl�m)n º . In practiceprs is complicatedandthebestwe canaccomplish
is to have ¶»7 � : shapedsomewhatlike � 7 � �

��� : p;s�7 � : jGl�m)n .
For example,if theBRDF is Lambertian,thenit is constantandthe“ideal” ¶�7 � : is

proportionalto jdl1m)n . Becausetheintegralof ¶ mustbeone,wecandeducetheleading
constant:

all � with
�k¼ �1½	S

� jGl�m)n ? i 
 �

This impliesthat �/
 ��� � sowehave:

¶»7 � :X
 �� jGl�m)n �

However, anacceptablyefficient implementationwould resultaslong as ¶ doesn’t get
toosmallwheretheintegrandis non-zero.Thustheconstantpdf wouldalsosuffice:

¶»7 � :X
 �3.� �

Thisemphasizesthatmany pdf’smaybeacceptablefor agivenBRDF model.
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7 SpecularReflectionModels

For a metal,we typically specifythe reflectanceat normal incidence� T 7�� : . The re-
flectanceshouldvary accordingto the FresnelEquations,anda goodapproximation
developedby ChristopheSchlickto this is givenby:

�@7�n � � :X
 � T 7v� : E¾7	�kB�� T 7�� :	: 7	�kB¿��À.&�n :QÁ
This allows oneto just setthe normalreflectanceof the metaleitherfrom dataor by
eye.

For adielectric,thesameformulaworksfor reflectance.However, wecanset � T 7�� :
in termsof therefractive index �x7�� : :

� T 7�� :8

�x7�� : B¾�
�x7�� : E¿�

S

Typically, wedon’t have � varywith wavelength,but for applicationswheredispersion
is importantit canvary. Therefractive indicesthatareoftenusefulincludewater(� 

� � !�! ), glass(� 
 � � O to � 
 � �VÂ ), anddiamond(� 
43 � O ).

8 SmoothLayeredModel

Matte/specularmaterialssuchasplasticsor polishedwoodshavereflectiongovernedby
Fresnelequationsat thesurface,andscatteringwithin thesubsurface. An exampleof
thisreflectioncanbeseenin thetiles in thephotographsin Figure12. Also notethatthe
blurring in thespecularreflectionis mostlyvertical. This is dueto thecompressionof
apparentbumpspacingin theview direction.This effect causesthevertically-streaked
reflectionsseenonlakesonwindy days,andcaneitherbemodeledusingexplicit micro-
geometryandasimplesmooth-surfacereflectionmodelor by amoregeneralmodelthat
accountsfor this asymmetry.

We could usethe traditionalLambertian-specularmodel for the tiles, which uses
two constantsto modulateaconstantandspecularcomponentof theBRDF. In standard
radiometricterms,this ideais expressedas:

� 7�n �
w
� n � �

w � � :X
 �hÃ^7�� :� E��kq � q17�n �
w
� n � �

w � : �
where �hÃ^7�� : is thehemisphericalreflectanceof thematteterm, �hq is thespecularre-
flectance,and� q is thenormalizedspecularBRDF(aweightedDiracdeltafunctionon
thesphere).Thisequationis asimplifiedversionof theBRDFwhere�hq is independent
of wavelength.This independencecausesa highlight that is thecolor of theluminaire,
so a polishedratherthana metalappearancewill be achieved. Ward suggeststhat in
orderto conserve energy, �hÃ^7�� : EÄ�hq ± � . However, suchmodelswith constant�hq
fail to show theincreasein specularityfor steepviewing angles.This is thekey point:
in therealworld therelativeproportionsof matteandspecularappearancechangewith
viewing angle.

Heetal. suggestusingtheFresnelequationfor thecoefficientof thespecularterm,
but do not addressthe subsurfaceterm’s angularbehavior becausethis model is in-
tendedprimarily to simulatesurfacephysics. SincetheFresneltermof theHe model
goesto onefor n 
ÆÅ ��Ç , theLambertiantermwould have to besetto zeroto enforce
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energy conservationfor all incident 7�n �
w : . Becausein thecaseof smoothpolishedsur-

facesenergy conservationis importantto us,andtheexplicit spreadreflectionis not(we
assumethatwewill modelit with micro-geometryfor thisdiscussion),theHemodelis
notappropriatefor ourpurposes.

Shirley attemptedto simulatethe changein the matteappearancewith angleby
explicitly dampening�hÃ^7�� : as �kq increases:

� 7vn �
w
� n � �

w � � � :È
 �hsP7�n :V� q.7�n �
w
� n � �

w � : E
�hÃ^7�� : 7	�kB¿�hsP7�n :	:� �

where� s 7vn : is theFresnelreflectancefor apolish-airinterface.Theproblemwith this
equationis that it is not reciprocal,ascanbeenseenby exchanging n and nG� which
changesthevalueof themattedampeningfactorbecauseof themultiplicationby 7	�kB
�ks�7�n :	: . The specularterm, a scaledDirac deltafunction, is reciprocal,but this does
not make up for thenon-reciprocityof thematteterm. BecauseShirley’s BRDF is not
physicallyplausible,it will causesomerenderingmethodsto haveill-definedsolutions.

Schlick proposeda generalreflectancemodeltunedfor efficiency. In his modela
matte/specularsurfacecouldhaveconstantLambertianandspecularcoefficients,or the
Fresnelreflectancecouldbeused.In thelattercase,whichhecallsadoublesurfacethe
BRDF becomes:

� 7vn �
w
� n � �

w � � � :È
 �hsP7�n :V� q.7�n �
w
� n � �

w � : E
�hÃ^7�� : 7	�kB¿�hsP7�É :	:� �

where �hÃ^7�� : is a mattecoefficient and É is half the anglebetweenincidentandout-
goingdirections.However, this form doesnot conserve energy for all incidentangles:
for example,at n 
ÊÅ ��Ç the specularreflectivity goesto one,andthe fraction of the
hemisphericalreflectanceis still above zero(e.g,. plug in n�� 
 � ). So thatpartof the
Schlickmodelis notappropriatefor ourpurposes.

In review of ourattemptto modelasmoothmatte-specularsurface,noneof thecom-
monly usedgeneralmodelsis appropriatefor our purposes.TheLambertian-specular
andWardmodelsdo not have theappropriateangulartrade-off betweenthematteand
specularterm. For smoothsurfaces,theHe modelhasa constantsubsurfacetermthat
must be set to zero if energy is to be conserved. The Schlick modeleitherdefaults
to the Lambertian-specularmodel,or it accountsfor the Fresnelequationeffectsbut
doesnot conserve energy. Onereasonthesemodelsfail for this caseis thatthey areall
intendedto modelspreadreflectionfor a variety of materialtypes. In our case-study
we do not needthis generality, so we candevelop a simplemodelthat is customized
for thisnarrow classof materialsandcapturestheangular-dependentrelationshipof the
matteandspecularcoefficients.Thismodelusesaphysically-basedspecularcoefficient
derivedfrom theFresnelequations,anda heuristicmattecomponentof theBRDF. To
our knowledge,it is thefirst modelthatproducesthematte/speculartradeoff while re-
mainingreciprocalandenergy conserving.Becausethekey featureof thenew model
is thatit couplesthematteandspecularscalingcoefficients,wewill hereafterreferto it
asthecoupledmodel.

Surfaceswhichhaveaglossyappearanceareoftenacleardielectric,suchaspolyurethane
or oil, with somesubsurfacestructure.Thespecular(mirror-like) componentof there-
flection is causedby thesmoothdielectricsurfaceandis independentof thestructure
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below this surface. The magnitudeof this specularterm is governedby the Fresnel
equations.

The light that is not reflectedspecularlyat the surfaceis transmittedthroughthe
surface.Thereeitherit is absorbedby thesubsurfaceor it is reflectedfrom a pigment
or asubsurfaceandtransmittedbackthroughthesurfaceof thepolish.This transmitted
light forms the mattecomponentof reflection. Sincethe mattecomponentcanonly
consistof asmuchlight asis transmitted,it will naturallydecreasein total magnitude
for increasingangle.

To avoid choosingbetweenphysicallyplausiblemodelsandmodelswith goodqual-
itative behavior over a rangeof incident angles,we note that the Fresnelequations
thataccountfor thespecularterm, �hs�7vn : , arederiveddirectly from thephysicsof the
dielectric-airinterface. Thereforethe problemmust lie in the matteterm. We could
usea full-blown simulationof subsurfacescatteringasimplementedby Hanrahanand
Krueger , but this techniqueis both costly and requiresdetailedknowledgeof sub-
surfacestructure,which is usuallyneitherknown nor easilymeasurable.Instead,we
canmodify the matteterm to be a simpleapproximationthat capturesthe important
qualitative angularbehavior shown in Figure12. Let usassumethat themattetermis
not Lambertian,but insteadis someotherfunction that dependsonly on n , n�� and � :� © 7�n � nG� � � : . We discardbehavior that dependson

w
or

w � in the interestof simplic-
ity. We try to keepthe formulasreasonablysimplebecausethe physicsof the matte
termis complicatedandsometimesrequiresunknown parameters.Weexpectthematte
term to becloseto constant,androughly rotationallysymmetric,asis arguedin He’s
dissertation.

An obviouscandidatefor themattecomponent� © 7�n � n � � � : thatwill bereciprocal
is the separable form

� � © 7�� : �)7vn : �)7�n�� : for someconstant
�

and mattereflectance
parameter� © 7�� : . We could merge

�
and � © 7v� : into a single term, but we choose

to keepthemseparatedbecausethis makesit moreintuitive to set � © 7�� : which must
be between0 and1 for all wavelengths.SeparableBRDFshave beenshown to have
severalcomputationaladvantages,whichsuggeststheseparablemodel:

� 7vn �
w
� n � �

w � � � :È
 �hsP7�n :9� q.7�n �
w
� n � �

w � : E (3)� � © 7�� : ��7�n : �)7vn � :��
Weknow thatthemattecomponentcanonly containenergy not reflectedin thesurface
(specular)component. This meansthat for � © 7v� :�
 � , the incident and reflected
energy are the same,which suggeststhe following constrainton the BRDF for each
incident n and � :

�ks�7�n : E 3.� � ��7�n :
��

T
�)7�n � : jdl1m;n � m	}9~@n � ? n � 
 � � (4)

Wecanseethat �)7vn : mustbeproportionalto 7`��B��hs�7vn :	: . If weassumemattecompo-
nentsthatabsorbsomeenergy have thesamedirectionalpatternasthis ideal,we geta
BRDF of theform:

� 7�n �
w
� n � �

w � � � :È
 �hsP7�n :9� q.7�n �
w
� n � �

w � : E� � © 7�� : 0Ë�hB��hsP7�n : 2v09�kB��hs�7vn � : 2 �
This is similar to a BRDF modelusedin thesensorcommunity, althoughtheconstants
usedin thatmodeldo not have thenormalizationpropertieswe desire.We couldnow
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Figure 14 Renderings of polished tiles using coupled model.

insertthe full form of theFresnelequationsto get �hs�7vn : andthenuseenergy conser-
vationto solve for constraintson

�
. Insteadwewill usetheapproximationdiscussedin

Section5.1This impliesthat

��7�n :'Ì 7	�kBÄ7`�kB�jGl�m)n : Á :��
Applying Equation4 gives:

� 
 3 �3 � � 7	�kB�� T :
� (5)

Thefull coupledBRDF is then:

� 7�n �
w
� n � �

w � � � :X
� T E¿7	�kB�jGl�m)n : Á 7`�kB¿� T : � q.7�n �
w
� n � �

w � : E� � © 7�� : �kB¾7	�kB�jGl�m)n : Á �kBÄ7	�kBDjGl�m)n � : Á � (6)

To testthis new coupledmodelwe createdanapproximategeometricmodelof the
scenein Figure12,whereeachtile hasadisplacementmapthatroughlycorrespondsto
thesubtleroughnessof therealtiles. We took two photographsof thetestscenesfrom
differentview angles,resultingin two differentvaluesof n .

Theresultsof runningthecoupledmodelis shown in Figure14. Note that for the
highviewpoint thethespecularreflectionis almostinvisible,but is clearlyvisible in the
low-anglephotographimage,while themattebehavior is lessobvious.

For reasonablevaluesof refractive indices,the � T is limited to approximatelythe
range� � � ! to � � � � (the value � T 
 � � � - wasusedfor the figures). The valueof �hq
in a traditionalPhongmodelis harderto choosebecauseit musttypically betunedfor
viewpoint in staticimages,andtunedfor a particularcamerasequencefor animations.
Thus,thecoupledmodelis easierto usein a “hands-off ” mode.

Wedid notattemptto mimic all subtletiesof geometryexactly, sothereadershould
concentrateon thegrossappearancefeaturesin therenderedandphotographicimages
of the model. Theseimageswere producedusing a Monte Carlo path tracer. The
samplingdistribution for thediffusetermis jGl�m)n�� � .

9 RoughLayeredModel

The previous model is fine if the surfaceis smooth. However, if the surfaceis not
ideal,somespreadis neededin thespecularcomponentis needed.An extensionof the
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coupledmodel to this caseis An Anisotropic PhongReflectionModel by Ashikhmin
andShirley, includedin thesenotes.

Notes

A commonradiometricquantitynot describedin the chapteris radiant intensity(� ),
which is the spectralpower per steradianemittedfrom an infinitesimalpoint source.
It shouldusuallybeavoidedin graphicsprogramsbecausepoint sourcescauseimple-
mentationalproblems.A morerigoroustreatmentof radiometrycanbefoundin James
Arvo’s dissertation(YaleUniversity, 1995).

Therearemany BRDF modelsdescribedin the literature,andonly a few of them
have beendescribedhere. Many of them,aswell asmoreon the physicsof surface
reflection,aresurveyedin Glassner’s two-volumesetPrinciplesof Digital Image Syn-
thesis(MorganKaufmann,1994).
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1 Measuring Reflectance

Before I discuss measuring the complete BRDF, I’ll first talk about some of
the simpler reflectance measurements that are commonly made. Because the
BRDF completely describes what goes on at an opaque surface, we can think
of all reflectance measurements as special cases of BRDF measurement.

What does it mean to make a measurement of the BRDF? The BRDF is a
function of three things (six variables): incident direction, exitant direction,
and position on the surface. Since we need a finite (i.e. not infinitesimal)
amount of energy before we can measure it, we have to integrate over some
area in all the dimensions of the BRDF—incident solid angle, outgoing solid
angle, and surface area. The way to describe any reflectance measurement
is to say what region of the BRDF you are integrating to get the number
that you write down.

1.1 Single-sample diffuse and specular measurements

The easiest way to get a single number for the reflectance of a surface (or
a set of numbers to describe its color) is to illuminate the surface from a
small solid angle somewhere on the hemisphere (integrating over incident
solid angle) and measure the reflected radiance with a detector that sees a
small area of the surface (integrating over surface area) and collects the light
that goes into a small solid angle somewhere on the hemisphere (integrating
over outgoing solid angle). Since the region of the BRDF’s domain being
measured is small, this kind of measurement approximates measuring the
BRDF’s value at a single point.
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BRDF integration region

Incident solid angle
Exitant solid angle

Figure 1: Measuring diffuse reflectance in a 45◦/0◦configuration.

This last statement is a little misleading, though, because of how BRDFs
behave. To say that we are approximating the BRDF’s value, we’d like the
details of the measurement not to matter too much. In particular, we’d
like to report the reflectance measurement without having to say what solid
angles we used. But the measurements will depend differently on the solid
angles depending on which part of the BRDF we are looking at.

Away from the specular direction, where the BRDF is a continuous func-
tion, the number from the detector will be proportional to sizes of the solid
angles (for fixed light source radiance), so we’ll divide by the product of the
two solid angles to get the number we report. This is a “diffuse” measure-
ment and is generally used to describe the color of the diffuse component of
a surface’s BRDF (Figure 1). Often the configuration that is measured has
the source at 45 degrees incidence and the detector normal to the surface
(“45◦/0◦”) or vice versa (“0◦/45◦”). Sometimes it’s not desirable to have
the specular reflection of the source end up back in the source, or conversely
to have the detector looking at its own specular reflection, in which case a
slightly off-normal configuration like 8◦/45◦ or 45◦/8◦ can be used. Usually
these measurements are referenced to a measurement of a known surface
(for example a diffuse 100% white reflector) and expressed as a percentage
diffuse reflectance.

But if we’re looking at a specular reflection, things are more compli-
cated—in that case our goal is to ensure that all the specularly reflected
light ends up being captured by the detector. Once this condition is satisfied,
the measurement is proportional only to the solid angle of the source (again,
with constant source radiance). This type of measurement can be referenced
to a measurement from a known specular reflector (a first-surface mirror,
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Incident solid angle

Reflected beam
Detector
solid angle

Figure 2: Measuring specular reflectance at 45◦.

for example) or to a measurement of light going directly from the source to
the detector without reflecting, and it is reported as a percentage specular
reflectance.

1.2 Hemispherical measurements

A carefully done measurement of specular reflectance says what there is to
say about the surface’s ideal specular reflection at a particular angle, but
a single point measurement of the diffuse component is only as meaningful
as the surface is diffuse. For repeatability, the configuration used in the
measurement needs to be carried around with the measurement itself as
part of the description of what the number means.

A more well-defined measurement is one that captures all the diffusely
reflected light. This can be done using an integrating sphere, which is a
hollow sphere painted white on the inside. Any light that enters such a
sphere is reflected many times and distributed uniformly around its interior.
By using an integrating sphere to collect and sum up all the light that
leaves a surface, one can make a “directional-hemispherical” measurement
(Figure 3).

You can measure the diffuse and specular parts of the BRDF together
by using a complete integrating sphere; or, if you only want the diffuse
component (as you do if you’re making a color measurement) you can put
a small hole in the sphere at the specular direction to let the specularly
reflected light escape and just add up all the diffusely reflected light.

Careful measurements of hemispherical reflectance involve making mul-
tiple measurements to correct for the fact that introducing the sample makes
the sphere not quite an integrating sphere any more.

Of course, you still need to report the incident angle: “0◦/d”, “8◦/d”.
The reciprocal measurements—d/0◦, etc.—are equivalent and are sometimes
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Figure 3: Measuring directional-hemispherical reflectance, including (left)
and excluding (right) the specular component.

more convenient to make.

1.3 Gloss measurements

For highly polished surfaces, in which you see a perfect mirror reflection,
just a single measurement of percentage reflection at a particular angle says
what there is to say about the specular reflection. However, many surfaces
are not perfectly smooth, but are still glossy. Quantifying the differences
in appearance between these surfaces is important, particularly if you are
manufacturing such surfaces.

Gloss is measured by comparing a measurement at the specular direction
with another measurement at an angle α from the specular direction (Fig-
ure 4). Although gloss measurements go by many names, the general idea is
that you use a value of α that is appropriate for the breadth of the specular
lobe you are measuring. If the surface is very nearly a mirror, you set α
to a fraction of a degree, and the resulting ratio is “distinctness-of-image
gloss.” If your surface is slightly less perfect α is 2 to 6 degrees and you are
measuring “haze” or “bloom.” If the surface is not really that shiny, you
put the second measurement far away and you are measuring what amounts
to a specular/diffuse ratio, called “contrast gloss.”

2 Traditional BRDF Measurement

All these single-number measurements are fine if you are dealing with sur-
faces that are near the ideal diffuse-plus-mirror behavior, or if you just need
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Figure 4: Measuring gloss by comparing a specular measurement with a
nearby diffuse measurement.

specific, repeatable measurements, for instance for quality control. But for
rendering in computer graphics we want to deal with more complex mate-
rials, and we want to know all about how they look, since in our models we
have to be able to illuminate and view surfaces from arbitrary directions.

For these reasons we need to do full BRDF measurements, for which an
appreciable number of individual samples of the BRDF are taken systemat-
ically over the whole domain. Devices for doing this are called gonioreflec-
tometers.

2.1 Designs for gonioreflectometers

The simplest gonioreflectometers measure only incidence-plane BRDF,
which means the viewing direction always lies in the plane defined by the
incident direction and the surface normal (Figure 5). For getting insight
into the behavior of a material this type of measurement is helpful, because
it can observe the most frequently occurring reflectance phenomena: diffuse
reflection, specular and near-specular reflection, and retroreflection.

To get the complete picture we need for rendering, however, we have
to make measurements of the whole BRDF, not just a slice through the
interesting part. This means we have to build a three- or four-axis device to
get to all the configurations we have to measure. Four axes are required if we
need to measure anisotropic BRDFs in full generality; the extra symmetry
in isotropic materials means three will suffice in that case (Figure 6)

An issue that always arises in BRDF measurement, and is very important
in gonioreflectometers, is what defines the surface area we are integrating
over. There are basically three ways for this to be set up, and each requires
a different normalization on the measurements to get BRDF values out.

The arrangement that is most familiar from rendering is to have the
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Figure 5: Two devices for measuring incidence plane (2D) BRDFs.

source uniformly illuminate a large area of surface, but have the detector
focused to measure only a small area within the illumination spot. This case
is like a pixel in a camera—the radiance integrated over that area will be
proportional to ρ(ωi, ωe) cos θi, and we have to divide by cos θi to get ρ.

However, equally valid is the dual case: the detector measures everything
coming from near the sample, but the light source is focused down so that
it illuminates only a small area. In this case the key surface area gets
larger in proportion to 1/ cos θi and the measurement is proportional to
ρ(ωi, ωe) cos θe and needs to be divided by cos θe.

In both of the preceding cases it’s important to make sure that as the
surface area expands toward grazing angles it does not fall off the edge of
the sample. The third approach is to make sure the measured area always
falls of the edge—that is, the source illuminates a large area and the detector
measures a large area, so that the edges of the sample itself define the surface
area. In this case the measurements are proportional to ρ(ωi, ωe) cos θi cos θe,
so the normalization factor is 1/(cos θi cos θe).

Since the normalization factors for these three cases are different, it’s
obvious that any gonioreflectometer needs to be built to stay in one of these
cases all the time. If it wanders from one case to another as the angles
change, it will be impossible to normalize the results into meaningful BRDF
values. This requirement is often what limits the maximum incident and
exitant angles that can be measured in a particular gonioreflectometer.

2.2 Suitability for graphics

Traditional gonioreflectometers work well, and they can produce very precise
and accurate results, even for difficult problems like measuring the tiny bit
of diffuse scattering from the surface of a mirror or the very dark reflection
from a black coating for optical components. However, these devices, since
they measure one sample at a time, take hours or even days to make densely-
sampled BRDF measurements.
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Figure 6: Two devices for measuring full isotropic (3D) BRDFs.

For graphics our accuracy requirements are not so high, and we are
interested mainly in everyday materials and phenomena that are visible to
the naked eye. Some important materials don’t come in small, flat pieces
that can be put in a gonioreflectometer. Also, complex environments contain
large numbers of materials, so we are willing to make some sacrifices for
speed and generality.

3 Image-based BRDF Measurement

With digital image sensors, such as CCD arrays, we can accelerate the pro-
cess of BRDF measurement by measuring many samples in parallel. The
idea is to take the three (or four) dimensions we need to measure, and in-
stead of handling all of them with mechanical degrees of freedom, take two
of them and assign them to the axes of an image sensor. With the right
geometric arrangement, we can measure thousands of BRDF samples with
a single brief exposure.

3.1 Ward’s mirror-based device

Ward [5] describes a BRDF measurement system that sets the incident direc-
tion in the usual way, by moving a source along an arc, but uses a spherical
reflector and a fisheye lens to capture all the reflected directions in a single
exposure (Figure 7). (The paper describing this device is reprinted in these
course notes.)

Anisotropic surfaces can be handled by repeating the BRDF measure-
ment with the sample in several different orientations. This device is simpler
than a four-axis gonioreflectometer, with many fewer moving parts: only the
source is required to move. It does, however, require an unusual component:
the hemispherical (or preferably hemiellipsoidal) part-silvered mirror.
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Figure 7: Ward’s image-based BRDF measurement device.

3.2 BRDF measurements using curved surfaces

Another, simpler, approach to using a camera to accelerate BRDF measure-
ment is to use standard camera optics with a curved sample. This approach,
used by Lu et al. [1] in the incidence plane and by Marschner et al. [3, 2] to
measure full BRDFs, is attractive because it requires no special equipment
and few moving parts, and because it can measure materials that cannot be
obtained in the flat, uniform samples normally required for BRDF measure-
ment (Figure 8). (The first paper [3] is reprinted in these notes.)

In this approach, every pixel of a digital camera is used as a detector
for BRDF measurement. With the camera focused on the surface and the
surface illuminated by a small source, each pixel returns a measurement
of the BRDF averaged over a small spot on the surface (the image of the
pixel) and over solid angles defined by the camera aperture and the light
source size. Since the surface is curved, you get a measurement of a different
configuration at each pixel, and if the BRDF is uniform across the surface
you can consider all the pixels to be measurements of a single BRDF. This
gives you a very dense collection of samples of the BRDF, scattered through
the domain in a semi-arbitrary way that depends on the shape of the surface
and on the camera and light source positions. The coverage will depend on
the range of surface normals presented by the visible parts of the surface—a
sphere, for instance, will give you the broadest possible coverage because it
presents all surface normals. If you take a series of photographs and choose
the right camera and light source positions, you can densely sample very
nearly the entire domain of an isotropic BRDF.

An interesting connection can be made between this photograph-based
measurement and the traditional gonioreflectometer design shown on the
right of Figure 6. One way to think of the photographic BRDF setup is that
in one image it measures all the same configurations that you would make
with this gonioreflectometer using a single detector position and all sample
orientations. But it makes all the measurements in parallel, in one exposure,
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Figure 8: Image-based BRDF measurement using a camera and a curved
surface with regular (left) and irregular (right) geometry.

and it avoids the need to build a multi-axis rotation device to position the
sample.

Because the material sample being measured need not—in fact, must
not—be flat, this approach can handle a range of important materials that
cannot be measured any other way. In particular, the BRDF of human skin
can be measured in vivo with this technique [3].

4 Dropping the BRDF assumption

The assumption that we made when we first started talking about measuring
and modeling the BRDF was that surfaces are opaque, so that the BRDF is
an accurate model for light reflection. If you examine the materials around
you, you will realize (especially if you are armed with a laser pointer) that
many materials—skin, leaves, milk, fruit, marble, and more—don’t con-
form to this assumption. In fact, when Nicodemus originally introduced the
BRDF [4] it was as a special case of the more general BSSRDF, the bidi-
rectional scattering-surface reflectance distribution function. The BSSRDF
drops the assumption that reflection occurs at each surface point in isola-
tion, and lets the reflectance depend on the points where the incident light
arrives at and the reflected light exits from the surface (Figure 9):

ρ(x, ωi, ωe) → S(xi,xe, ωi, ωe)

For homogeneous surfaces, all that matters is the distance r between xi and
xe.

The BSSRDF can be measured using techniques similar to BRDF mea-
surement techniques, but this time the source and the detector both must
be focused to small spots, and the distance between the spots has to be able
to vary. Again image-based measurement can speed things up: by focusing
the light to a small area and measuring the reflected light with a camera,
the reflectance for all values of r can be measured at once.
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BRDF BSSRDF

Figure 9: The BSSRDF drops the assumption of single-point reflection,
which is inherent to the BRDF.

For more about measuring and modeling the BSSRDF, see the paper,
“A practical model for subsurface scattering” in this SIGGRAPH’s papers
program.
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Microfacet-based BRDFs

MichaelAshikhmin

Universityof Utah

1 Introduction

In this sectionof thenoteswe provide a brief overview of popular
reflectionmodelswhich arebasedon the principlesof geometric
optics. An equivalenttermwe useis “microfacet-based”.This de-
viatesslightly from traditionaluseof this last term which usually
includesonly analyticalmodelsandexcludesmodelsbasedon ex-
plicit simulationof light scatteringfrom a surface.We donot seea
needfor suchseparationsincein bothcasesthesamemodelof the
surface-lightinteraction(to bedescribedlater)is used.Theempha-
sisof presentationwill beput onpracticalaspectsof themostpop-
ular generalmodels(or very recentmodelswhich have a chanceto
becomepopular). No attemptis madeto mentionevery published
work. In particular, modelswhich considersubsurfacescattering
arenot coveredat all. For a morecompletesurvey oneshouldcon-
sult [25]. Relatively few modelsin the domainwe considerhave
beenpublishedsincethis review andwe mentionmany of them.
Referencelists of otherpapersincludedwith thesenotescanalso
serve asa valuableresourceif completenessis desired. We also
will notdiscussin detailcomputationalefficiency of differentmod-
els - this importanttopic is beyond the scopeof this course. For
software implementation,efficiency of the model can be approx-
imately judgedby its complexity (this is especiallytrue for ana-
lytical models).Readersinterestedin hardware-assistedrendering
with arbitraryBRDFscanconsult[15] andreferencesthereinto get
themstarted.

It is commonto describereflectionpropertiesof a surfaceby
factoringBRDF into at least two parts: diffuse and specularre-
flectances(In addition,a mirror reflectanceterm is sometimesin-
cluded). Most of the discussionin this sectionof the notesrefers
to the specularpart of the BRDF. Unlessspecifiedoverwise,the
diffusepartis modeledby a Lambertian(constant)BRDF.

Theinitial title of thisdocumentwas“Microf acet-basedandem-
pirical reflectionmodels”. After someconsideration,however, it
becameclearthatno general-purposemodelcurrentlyusedis truly
empirical. (A major exceptionof the original Phongmodel and
someof its derivativeswill bediscussedlater.)

This statementneedssomeclarification. It is quitepossiblethat
multiple special-purpose(i.e. describingone particularmaterial)
andmaybeeven moregeneralempiricalreflectionmodelsarebe-
ing createdevery year in universitiesand industry researchlabs.
Unfortunately, theserarelystandachanceof beingpublishedin vis-
ible openliterature.Themainreasonfor this is thegeneralclimate
in computergraphicsresearchcommunitywhich seemsto effec-
tively require a physicaljustificationfor the model,often leaving
its practicalusefulnessasa secondarycriteria. To the bestof our
knowledge,therehasbeennonarrowly specializedempiricalmodel
publishedin recentyearsandall moregeneralmodelsdo provide
ratherextensive physicaljustification. (It is interestingto contrast
this with recentpublicationof severalspecial-purposewave optics
basedBRDFs[9,28].)

Westartthispaperfrom abrief descriptionof relevantphysicsof
light-surfaceinteraction,section2. Theprimarygoalof thissection
is to understandtherangeof applicabilityandphysicallimitations
of any geometricopticsbasedmodel.Wethenproceedwith discus-
sionof importantclassesof BRDFsin theremainderof thepaper.
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Figure1: Geometryof reflection.
�

is geometricsurfacenormal,���
is thedirectionto thelight,

���
is thedirectionto theobserverand�

is half-vectorbetweenthem. Thesethreevectors share a plane
which mightnotcontain � . � is thecharacteristicheightof surface
microstructure. An exampleof shadingis shownon theright.

2 Physical foundations

The reasonfor non-trivial (not perfect mirror) reflection from
a surface is its microstructure. Mirror reflection takes place if�
	����� �������

where � is characteristicheightof thesurfacemi-
crostructurefeatures,� � is the incidentangleand

�
is light wave-

length.By microstructureherewe meanthefine structureof a sur-
faceon the scalesmallerthan anything we are interestedin rep-
resentingexplicitly for the renderingof a given image. In other
words,it’ s thegeometrywhich is too small to bevisible. To avoid
any confusion,we explicitly statethat geometryrepresentedby
bump mapsdoesnot constitutemicrogeometryfor our purposes.
Theonly effect themicrostructurehasis a changeof theway sur-
facereflectslight. Note that this definition dependson particular
viewing conditionsand, in fact, the samegeometrycanbe repre-
senteddifferentlyfor renderingdifferentframesor evenin thesame
frame[4].

In this part of the noteswill concentrateon modelswhich do
not take into accountthewavenatureof light anduseonly geomet-
ric optics. Ignoring wave effects immediatelyexcludesmaterials
which exhibit noticeablediffraction andinterferenceeffects. One
could arguethat suchmaterialsare in weakminority in everyday
life. This is not thecase,however: everymaterialin theoryexhibits
wave effectsundercertainconditions,aswe will show below.

Physically, geometricopticsconditionrestrictsthe featuresize
of the surfacemicrostructurefrom below to at leastseveral wave-
lengths.A usefulruleof thumbto estimatethestrengthof waveef-
fectsin ageneralsettingis to rememberthatbecauseof thediffrac-
tion on an objectof size � light (a planewave) deviatesfrom its
initial propagationdirection by an angleof the order

��� � (small
deviation angleis assumedfor this approximation).Applied to our
problemof reflection,oneshouldkeepin mind that closeto graz-
ing incidencethe effective sizeof the surfacemicrostructurewill
decrease( �����
	����� � ). This is whatmakesit possibleto observe
interferenceeffects on very coarsestructuresat near-grazingan-
gles. Notethat theconditionto reliably ignorewave effectswhich
can be written as

��� ��	����� � ���! 
(very small deviation angle)



is exactly the oppositeto the mirror reflectioncondition. These
two inequalities" togethergivearangewherenon-trivial waveoptics
basedmodelsshouldbeused.Accidentally, they alsoshow thatthe
most trivial reflection(perfectmirror) is a strictly wave opticsef-
fect,eventhoughin practiceit is alwayshandledwith geometricop-
tics techniques.Anotherimmediateresultis thatstrictly speaking,
onenever candescribereflectionby only geometricoptics:evenif
undernormalincidencegeometricopticsis adequate,closeto graz-
ing anglefirst wave effectsandthenmirror reflectionprevail. Al-
thoughweobservedthefull transition(geometricto waveto mirror)
for a few surfaces,it is really quiteunusualeffect to worry muchin
practice.This is dueto thefact thatfor mostsurfacesto which ge-
ometricopticscanbeappliedundernormalincidence,wave optics
effectsstart to appearso extremelycloseto the grazingincidence
thatobservingthemwouldrequireveryspecialconditionsfor these
effectsnot to becompletelyobscuredby otherfactors.An example
of suchspecialcircumstancesis lookingatasemi-infiniteplane(or
extremelylargepolygon)from its edge.For thesake of complete-
ness,we shouldalsomentionedthat if onewantsto usea coherent
light source(a laser)to light a scene,wave opticsshouldbe used
regardlessof thecharacteristicsizeof surfacemicrostructure- even
overwise“large” bumpscanproducewell known specklepatterns
in laserreflections.

The choiceof geometricopticsasthe tool for describinglight-
surface interactioncompletelydescribesthe presentationof light
asa flux of classicalparticles(commonlymisnamedas“photons”)
propagatingalongstraightpaths(rays).It alsospecifiesthewaythe
directionof a singleray changeswhenit hits a flat surface. This
is donethroughthe well known geometriclaws of reflectionand
refraction. Onestill needsto specifythe surfacedescription.Mi-
crofacetmodelsassumethat surfaceconsistsof a largenumberof
small flat “micromirrors” (facets)eachof which reflect light only
in the speculardirection. An extensionof this view is consider-
ing microfacetsto have someother reflectionproperties(not that
of a perfectmirror). By computingthe numberof visible facets
at appropriateorientationsto transportlight from thesourceto the
viewer, onecan determinethe BRDF. Multiple analyticalderiva-
tions of the final resultof microfacetmodelsareavailable[2, 29]
andwe do not repeatthis processhere.We will discussthis result
in section4 but will startfrom approachesbasedon directsimula-
tion of light scatteringby a surfacedonewithin theboundariesof
geometricoptics.

3 Non-analytical models

Onevery generalapproachto consideringsurfacereflectionis to
split the probleminto two parts. First, oneexplicitly modelsthe
microgeometryof thesurfacewhich reflectionpropertiesareof in-
terest. With suchgeometricmodel it is possibleto usecommon
techniquessuchasraytracingto simulatetheprocessof light scat-
teringby thesurface.Effectively, atthisphasethemicrogeometryis
“promoted”to therankof “normal” geometry. This representation
is only usedduringthis preprocessingstepandis never includedas
a partof actualsceneto be rendered.The resultof thesimulation
processis a numericalrepresentationof thecompleteBRDF. Dur-
ing thesecondstagethis result is usuallypresentedin a way con-
venientto useduringrendering.Somerepresentationswhich have
beenexploredincludesphericalharmonics[31], and,morerecently,
multiple cosinelobes[12], sphericalwavelets[26] andneuralnet-
works [8]. A representative paperby Westinat al. [31] giving the
detailsof thetechniqueis includedwith thenotes.

The main advantagesof this approachover other methodsare
its unsurpassedgeneralityandaccuracy (within the limits of geo-
metricoptics). As long assurfacemicrostructurecanbemodeled,
theprocesswill createa valid BRDF. No approximationsarefun-
damentallynecessaryto succeed:theonly penaltyis potentialrun-

time increaseof thesimulationstep.It’ s completelyup to theuser
whetherto includemultiplebouncesof rayswithing themicrostruc-
ture,whethertheelementsof thesurfacearejust smallmirrors(as
wespecifiedthembefore)or they havemorecomplex behavior (dif-
fuse,Phong-like, transparentor any combinationof these),theflex-
ibility analyticalmodelsusuallylack. If this elementaryBRDF of
a singlefacetis reciprocalandconservesenergy, theresultwill au-
tomaticallyhave thesepropertiestoo. Dependingon what effects
areincludedin thesimulation,theresultcanrepresentonly specu-
lar part of BRDF (if, for example,the elementsof thesurfaceare
treatedasmirrors andonly singleray bouncesareconsidered)or
thefull BRDF.

Therearetwo maindisadvantagesof non-analyticmethods.The
first oneis that thesurfacehasto bemodeled.This requiresdirect
humanintervention,agoodproceduraltechniqueor somemeasure-
mentof thesurfacemicrostructure,whichis noteasyto obtain.The
seconddisadvantageis thefactthatthetrueresultof themethodis
anumericalrepresentationof a four dimensionalfunction(BRDF).
Direct useof thesenumbersis cumbersomeandalternative more
convenientrepresentationscanintroduceartifacts,diminishingthe
accuracy. All representationsarealsomuchlesscompactthanan-
alytical models. Several methodsto factor reflectionmodelsinto
lower dimensionalfunctionshave beenproposed[10,15,22], but
they areoftendesignedwith specificgoalsin mind (suchashard-
warerendering)andmightnotbeasusefulin ageneralsettingwhile
addinganextra preprocessingstepto thetechnique.

4 Analytical Models

Analyticalmodelsareperceivedasmoreconvenientbymostpeople
sincethey do not require(or requirevery moderate)preprocessing
andareusually easierto implementanduse. The main result of
microfacettheorycanbelooselywrittenin its mostgeneralform as

#%$'&)(+* � �-, � �/.1032 *4� .-5 * � �6, � �/. (+*-* � � .-.
(1)

where
���

and
���

arelight’s in andout directions(vectors),H is the
half-vectorbetweenthe two and

* � � .
is a dot product. All vec-

torsareassumedto benormalized.Differenttermsof this equation
specify, in turn,thedistributionof microfacetorientations(

2
), shad-

owing andmaskingeffects (
5

, which we will simply call “shad-
owing term” andwill includeall othernormalizationfunctionsin
it) andFresneleffects(

(
). Differencesamongavailableanalytical

microfacetmodelsareprimarily in how they treat the shadowing
term,whatkindsof distributionsareallowedandwhethertheFres-
nel termis included.

Almost every modelmentionedin this sectioncanbewritten in
thisform, regardlessof whetherit wasoriginally developedthrough
the apparatusof microfacet theory or even with microfacetsin
mind. (One exceptionis describedin section4.4). For someof
thesemodelsoneor even two of the last termsaresimply set to
one,whichmeansthatparticularphenomenonis simply ignoredby
themodel.

Oneshouldrealizethattheconvenienceof having a closedform
solutioncomesfor a price. To obtainsucha solution,everymodel
makesadditionalassumptionsaboutthesurfaceandits interaction
with light. This always leadsto restrictingthe classof surfaces
handledby a given modelandcanproducenon-physicalartifacts
suchas lack of energy conservation. Most commonassumptions
are:

7 only single bounceof light from microfacetsis includedin
the analyticalsolution. To the bestof our knowledge, this
conditionis employedby every modelexcept[19]



Figure2: Two dielectricspheres,renderedwith (left) andwithout
(right) Fresnelterm. Imagesare courtesyof StephenWestin.

7 the effect of multiple bouncesis approximatedby an addi-
tional Lambertiandiffuseterm. More recentmodelsmake an
attempttodesignasomewhatbetterdiffusefunction,but com-
plex multiplebouncebehavior (suchasthatof coloredvelvet)
is still not well handled.

7 specificconditionsareimposedon thedistribution of micro-
facets. Thesecan rangefrom very mild [2] to as severe as
consideringonly one particulardistribution and even some
specificparameterrangefor it [30].

7 as mentioned,oneor two of the termsin equation1 might
becompletelyignoredandany or all of thethreecanbesim-
plified to obtain analytic solution. The exact effect of this
dependson the particularmodelandthe degreeof deviation
from thereality.

We will now discussthe relative importanceof different termsin
equation1.

4.1 Relative importance of different factors

By far the mostimportantof the threefactorsin equation1 is the
microfacetdistribution,

2 *4� .
. It gives the shapeof the specular

highlight and is at the core of any model. One shouldnote that
theexactphysicalinterpretationof

2 *4� .
candiffer from modelto

model. For example, [19] usesslope-areaprobabilitydistribution
while [2] usesthe distribution of the numberof microfacetswith
given normal in its derivation. This subtlequestionis, of course,
only relevantfor modelswhichexplicitly usemicrofacettheory. For
moresimplemodelswe just identify the dominantterm in BRDF
expressionastheonecorrespondingto

2 *4� .
.

We argue that the presenceor absenceof the Fresnelterm is
the secondmost importantfactor for the visual appearanceof the
model. Many surfacesdo exhibit noticeableFresneleffects and
ignoring themcanintroducesubstantialdeviationsfrom expected
appearance.Therearetwo mainFresnel-termrelatedeffects:I) the
differencein theamountof light beingreflectedby thesurfacefor
differentincidentangles(roughly, morereflectionasonegetsclose
to grazingincidence)andII) shifted(off-specularfor singlePhong-
stylehighlight)positionof thehighlightmaximum.For metals,the
first effect is usuallyminor sincethey alreadyreflect80 percentof
light or moreat normalincidence.For dielectricstheeffect is quite
noticeable,seeFigure2. More examplesareavailable in [3,12].
Off-specularpositionof reflectionmaximumis reallyaresultof the
interplay betweenFresnelterm and most commonlyusedshapes
of
2 *4� .

. It canbe importantif compareddirectly with measured
(photographed)databut lack of this effect is usuallynot disturbing
visually.

Inclusionof the full Fresnelexpressionfound in physicsbooks
canleadtoasubstantialcomplicationof themodelandsizablecom-
putationalpenalty. However, it seemsto bethecasethatfinedetails
of the Fresnelterm do not make much visual differenceas long
asthe term itself is present.This observation hasleadSchlick to

thedevelopmentof anapproximation[23,24] theuseof which we
highly recommend.ApproximatingFresnelterm looks evenmore
viableif oneremembersthatexactformulationdependsonlight po-
larization- somethingwhichis almostneverconsideredin graphics.
While one can usepolarization-averagedFresnelexpressionfor
singlereflection,multiple reflectionsarevery commonin graphics
andpolarizationinformationwouldbenecessaryto adequatelydeal
with themif exactFresneltermis used.With Schlick’s formula,it
shouldbepossibleto augmentin aninexpensive way modelslack-
ing Fresneltermin their original formulation.

Finally, thetermwhich accountsfor shadowing effects,
5

, is vi-
sually probablythe leastimportantof the three(seealsoFigure3
anddiscussionrelatedto it below). For simplemodels,this term
is simply “everythingwhich is not coveredby

2
and

(
”. Its de-

tailsareessential,however, to keepenergy conservedby themodel.
This canbeimportantin somerenderingalgorithms,suchassome
variationsof raytracingwhich mayrely on energy conservation to
be able to terminatethe rays. Other than that, the issueof good
energy behavior is largely a matterof intellectualsatisfactionand
many popularmodelsdo not conserve energy undercertaincondi-
tions.By “goodbehavior” wemeanbothnotreflectingmoreenergy
thanis incidentandnotuncontrollablyloosingtoomuchenergy. In
particular, mostmodelshaveproblemsmaintaininggoodenergy be-
havior propertiesnearthe grazingangle. Somepossiblesolutions
to this problemfor popularmodelsareproposedin [13,14]. More
principle solutionis provided by the modeldescribedin [2]. One
shouldremember, however, that no geometricopticsbasedmodel
is adequatevery closeto grazingangleanyway (section2), so this
problemdoesnot have a really satisfyingsolutionwithin our do-
main.

The issueof having more (or less)energy than necessaryre-
flectedby the model is usuallyhandledin practiceby ad hoc ad-
justmentsto thetotalreflectanceof thesurface.Moreover, evensys-
temscreditedfor someof themostrealisticimagesever produced
(suchasPixar’sRenderMan)oftendosoby usingnon-physicalad-
justmentsto their lighting andreflectionmodels[1]. Anotherfactor
which lessenstheimportanceof having physicallyjustifiedenergy
behavior is thatmostspecularhighlights,if computedin physically
meaningfulunits,areout of rangeof commondisplaydevicesand
sometype of tonemappingprocessis necessary. This is usually
a nonlinearprocesswhich, while mostly preservingthe shapeof
highlight, canchangethe visual perceptionof the total amountof
reflectedenergy dramatically.

Everythingwhich is saidhereaboutthe relative importanceof
the termsin equation1 is basedon the author’s personalexperi-
enceonly. To thebestof my knowledge,no formal studyhasbeen
doneto objectively evaluatethe importancefor a humanobserver
of differentreflectioneffectsincludedto or excludedfrom BRDF
in asettingof generalcomputergraphicsimagery. “A sphereunder
a singlelight” imageswidespreadin BRDF literaturearedesigned
to show reflectionmodel differencesand hardly qualify for such
a study. The authoris willing to speculatethat undermoregen-
eral lighting conditionsand with complex scenegeometryminor
differencesbetweenmodels(for example,modelsdescribedin sec-
tion 4.2)will beveryhardto observe andtheimageswill bealmost
identicalvisually.

It is alsoassumedin theabove discussionthat thetermsarede-
signedwithin certainreasonablelimits. For example,Fresnelef-
fects are not inverted(more reflectionnearnormal incidence)or
shadowing term doesnot make the energy reflectedby a surface
infinite (this actuallycanhappenevenfor a very usefulmodelnear
grazingangle[30], but it is probablynotagoodideato toleratesuch
behavior in any othercase).



4.2 Phong-style single highlight

Mostcommoneffectmodeledby microfacet-basedanalyticalmod-
elsis asinglespecularhighlight. TheoriginalPhongmodelis prob-
ably the only truly empiricalmodel currently in wide use. In its
original formulation it is not even a BRDF, just a shadingfunc-
tion andsomeeffort is neededto convert it to a BRDF [20]. Sev-
eralmodificationsto this modelhave beenproposedto improve its
properties[11,13]. Themostpopularmodificationof Phongshad-
ing termis dueto Blinn anduses

2 *4� .98 *4� � .;: where < is the
parametercontrollingthesharpnessof specularhighlight. With this
modification,Phongshadingfunction canbe consideredasa mi-
crofacetmodelwherebothshadingandFresneleffectsareignored.

It is interestingto notethatBlinn’spaper[6] actuallyintroduced
microfacetmodelsoriginally developedin physics[29] to computer
graphicsandusedthreedifferentdistributionsfor

2 *4� .
, Phong’s

beingjustoneof thethreeandnottheonerecommended.Thepaper
did not containany discussionof color and did not demonstrate
very significantdifferencesfrom Phongmodel,which is probably
the reasonwhy Cook andTorrance[7] areoften given the credit
for thefirst practicalmicrofacet-basedmodelin computergraphics.
They usegaussiandistributionof microfacets.Bothpapersusedthe
original shadowing term from [29]. This shadowing expressionis
still the onemostcommonlyusedin graphicseven thoughothers
areavailable(see[2] andreferencesin it). Oneshouldremember
that it wasderivedusinggeometricallyinconsistentassumptionof
a surfaceconsistingexclusively from randomlyorientedV-grooves
with lengthmuchgreaterthanwidth. Thisinconsistency is themain
reasonfor this shadowing term often not doing its main job, i.e.
notproviding full energy conservation[13,14]. Anotherreasonfor
this problemis that true gaussiandistribution of microfacetshas
to containadditionalangle-dependentnormalizationfactors,which
arealmostnever included,seeBeckman’s book[5] for details.

Ward [30] introduceda model designedwithout explicit use
of microfacet theory but rather to fit experimentaldata. This
model,however, canberepresentedby equation1 with Fresnelterm
omited,anisotropicgaussian

2 *4� .
andinversesquarerootsplaying

the role of the shadowing term. This is oneof the two currently
availablesimplemodelswhich includeanisotropy andarereason-
ablyMonte-Carlofriendly [3,30]. Oneshouldkeepin mindthough
that expressionsfor importancesamplingpresentedWard’s paper
only approximatetheneededdistribution. This modelhasbecome
a very popularone,to the degreethat original warningby its au-
thor aboutapplicableparameterrangefor thegaussiandistribution
is now oftenignored.Suchcarelessnesscanproducenoticeablear-
tifactsneargrazinganglessincethemodel’stotalreflectedenergy is
infinite there.Thereaderis encouragedto look at theWard’spaper
which is includedwith thenotesfor moredetails.Wardalsoadvo-
catedreverse-engineeringof a reflectionmodelby obsedvation of
thescpecularhighlight andevendesigneda simpledevice thatwas
similar to a cup with a hole in the baseanda light emittingdiode
inside it. If oneputs the cup on a surfaceand looks trhoughthe
hole, the reflectionof the diodewill have a certainshapeonecan
matchto a chartfor Ward’s model.(Greg Ward,PeterShirley, per-
sonalcommunication,2001).We describebelow a similar in spirit
approachwith respectto themodelpresentedin [2].

Another model for anisotropicreflectionis that of Poulin and
Fournier[21] which hasbeendevelopedsomewhatearlier. It mod-
elsasurfaceasconsistingof cylindrical bumpsor groovesandpro-
ceedsfirst to derive expressionsfor shadowing andthenthe com-
pleteBRDF basedon this particularmicrogeometry. This model
is much more complicatedthan Ward’s (the paperdoesnot even
provide a singleformulafor theBRDF).

Schlick investigatedthe problem of making single highlight
modelsmore efficient computationally[23,24]. He starts from
modelsderivedusingfull microfacettheoryandexplicitly contain-
ing all threetermsof equation1. Theresultis severalapproximate

formulationsfor different termsof equation1 all of which, espe-
cially thealreadymentionedapproximationto Fresnelexpression,
canbeusedin othermodelsaswell.

More recently, Neumannet al. have developedseveral varia-
tionsof singlehighlight analyticmodels[16–18].They modify the
analogof shadowing term to adjustthebehavior of Phongmodel.
An interestingexampleof the processof reflectionmodeldesign
is presentedin [18] whereonefirst ensuresthe neededproperties
andthentry to preserve themwhile building up themodel. Some
of theresultsof Neumannet al. [16] wereextendedin [3] to obtain
a model which includesanisotropy and Fresneleffects in a very
simple formulation. A technicalreport which gives an extended
versionof this paperis includedwith the notes. This is the sim-
plestmodelknown to uswhich includesall majoreffectswhichare
of interestto singlehighlight models: anisotropy, Fresneleffects,
goodenergy behavior, MonteCarlofriendliness.It alsoprovidesa
non-Lambertiandiffusetermwhichcanbeusedindependentlywith
any othermodelwhich includesFresneleffectsit its specularpart.

In our experience,differentmodelswhich includethe sameef-
fectsoften producevisually extremelysimilar imagesfor general
scenes.As a result,many building blocksof differentmodelscan
beusedinterchangeablywith eachother. An exampleis given on
Figure3 wheretheresultof Neumann’s metallicmodel[16] is first
augmentedwith Fresneltermandthisresultis thencomparedwith a
newly assembledmodelin which we replaced<>=@? *-* ��� � .A, * ��� � .-.
with Ward’s squareroots. Thencomparedwith theoriginal Phong
model,however, onecannoticea differencedueto theabsenceof
Fresnelterm (look at the groundplane),but even this difference
is minor sinceall objectsaremadefrom metal (seesection4.1).
Underspecialviewing/lighting conditionsthedifferencesmightbe
morenoticeablebut theseimagessupportourspeculationexpressed
neartheendof section4.1.

4.3 More general models

Thereis only a handfulof modelswhich attemptto describeana-
lytically reflectionwhich is moregeneralthanasinglePhong-Ward
stylehighlight. Themainreasonfor this is thatfor physicalreasons
this simplebehavior describesa greatmajority of thematerialswe
seearoundus.

Lafortuneet. al. [12] presenteda generalizationof single lobe
modelsdescribedin theprevioussection(thepaperis includedwith
thenotes).They allowed multiple lobesto be fit to someexternal
data. This work can also be usedas a standalonemodel if the
lobesandtheir weightingsareadjustedasfreeparametersandnot
givenby numericalfits. Theauthorscanalsobecreditedfor call-
ing the attentionof the graphicsresearchcommunityto the need
for a non-Lambertiandiffuseterm. Suchtermswerelater included
with modelsdescribedin [2,3,27]. The authorof this sectionof
the noteshasno personalexperiencewith this model. Lafortune
provided the following commentwhenhe wasasked for insights
abouthis work which arenot widely known: “The mostdifficult
aspectof thismodelappearsto bethenon-linearfitting to measure-
mentdata.Non-linearoptimizationoften is somethingof anart. I
haven’t foundany magicalrecipesofar; I usestandardLevenberg-
Marquardt,asdescribedin the paper, andtry to follow up on the
convergenceof the process.” (Eric Lafortune,Personalcommuni-
cation,2001).Notealsothatvisuallysimilar resultscansometimes
beobtainwith a simplermodel[3].

The mostgeneralanalyticmodeldevelopedso far is presented
in [2]. A copy of this paperis includedwith the notes. The re-
sult follows quation1 with only mild constrainson thetypeof mi-
crofacetdistribution anda specialshadowing termwhich enforces
energy conservation. If strict energy conservation is not of pri-
mary importance,we noticedthat, in agreementwith our earlier
observationsin sections4.1 and4.2,we caninterchangetheshad-



Figure3: Metallic objectsin theseimageshavethe following reflectionmodels:left - original Phong, center- Neumannaugmentedwith
Fresnelterm,right - sameascenter, with <B=@? *-* ��� � .A, * ��� � .-. replacedby C *-* ��� � . * ��� � .-. . Imagesare courtesyof PeterShirley.

owing function D (papernotations)computedfor onedistribution
with thatcomputedfor another. For example,D correspondingto a
usualgaussiandistribution (which width shouldbe approximately
thesameasthatof therealdistribution

2 *4� .
used)couldhavebeen

usedto createimageson figures1 in thepaper(andeven 11, left)
with very minor, if any, visual differences.This observation can
improve practicalutility of the modelsignificantlyby simplifying
precomputationstepto creatinga library of a few D functionsand
using the onecorrespondingto the distribution closestto the one
currentlyneeded.

Anotherprobablemisconceptionaboutthismodelis thatananal-
ysis of the detailsof surfacemicrogeometryis necessaryto come
up with analyticdistributionsof theneededform. This is only one
wayto go,however. Often,it is mucheasierto reverse-engineerthe
distributionandits parametersfrom theobservedshapeof thespec-
ular highlight. This is what hasbeendonefor cloth distributions
andtheir parameters,as illustratedby Figure4. A pieceof cloth
waswrappedarounda cylinder andthe highlights this configura-
tion producedwerestudied.Thedoublestructureof satinhighlight
andslantof thevelvet distributionsarequiteobvious. Rotationof
thecloth by 90 degreesrevealsanisotropiccharacterof the reflec-
tion. In thepaper, only majorcharacteristicsof thereflectionwere
modeled.If desired,secondaryeffects(suchasthedim highlightfor
satinvisible on the bottomphotograph)canbe includedin a sim-
ilar way. Parametersof distributionsareeffectively readoff from
the positionsof the highlights. Although this wasdonemanually
for the paper, one can imaginea simple automaticmeasurement
systemwhich doesthis job. Another interestingpossibility is in-
teractive designof a reflectionmodel. Sinceour paperusesonly
two-dimensionalfunction

2 *4� .
asthe input andtheresultusually

conformsto intuitive expectations,a humanusercan designthis
functionwhichwouldhavebeenexcessively difficult to dofor afull
threeor four dimensionalBRDF. Figure1 in thepaperscratchesthe
surfaceof possibleeffects.

4.4 Generalized Lambertian model

A model developedby Oren and Nayar [19] hasa specialplace
amongmicrofacetmodels.First of all, the modelconcentrateson
modifying thediffusereflectionof thesurfaceratherthanspecular
behavior. It also includesinterreflections(multiple ray bounces)
amongthe microfacets. It assumesgaussiandistribution of mi-
crofacetsandappliesa variation of the V-grove shadowing term.
Sincethe model assumesdiffuse microfacets,thereis no Fresnel
term.Theresultof all thesedifferencesis thatequation1 is not fol-
lowed. The(rathercomplicated)final formulaof themodelis then
approximatedby a moremanageableexpression.Visual resultsof
the model are closeto observed appearanceof clay anddust but
overall arenotvery far from theLambertianreflectance.

Figure 4: Photographsof cloth-wrappedcylinders. Left: satin
Right: velvet. Below: samepiecesof cloth after 90 degreesrota-
tion. Thelight comesfromthefront andabove(noticeno shadows
of thecylinderon the table). Lighting conditions,including inten-
sity, are identicalfor all images.



5 Conclusion and acknowledgements

In thispaperwepresentedanoverview of populargeometricoptics
basedreflectionmodels. An attemptwasmadeto concentrateon
practicalissueswhich arenot alwayscoveredin theliterature.The
authorgreatlyappreciatesthehelpof everyonewho suggestedand
contributedpapersfor all partsof thesenotes,allowedtheir images
to beusedandprovidedcommentsabouttheir work. In connection
with thissectionof thenotesin particular, I wouldliketo thankEric
Lafortune,PeterShirley, Greg WardandStephenWestin.However,
muchof thematerialin this paperis basedon theauthor’s personal
experiencesandis, therefore,subjective. Theauthoris theonly one
responsiblefor the opinionsexpressedin this paperwhich might
not coincidewith thoseof othercourseparticipantsor peoplemen-
tionedin this section.
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The quality of computer generated images of three- 
dimensional scenes depends on the shading technique 
used to paint the objects on the cathode-ray tube screen. 
The shading algorithm itself depends in part on the 
method for modeling the object, which also determines 
the hidden surface algorithm. The various methods of 
object modeling, shading, and hidden surface removal 
are thus strongly interconnected. Several shading tech- 
niques corresponding to different methods of object 
modeling and the related hidden surface algorithms are 
presented here. Human visual perception and the funda- 
mental laws of optics are considered in the development 
of a shading rule that provides better quality and in- 
creased realism in generated images. 

Key Words and Phrases: computer graphics, graphic 
display, shading, hidden surface removal. 
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Introduction 

This .paper describes several approaches to the pro- 
duction of shaded pictures of  solid objects. In the past 
decade, we have witnessed the development of a number 
of systems for the rendering of solid objects by com- 
puter. The two principal problems encountered in the 
design of these systems are the elimination of the hidden 
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parts and the shading of the objects. Until now, most  
effort has been spent in the search for fast hidden surface 
removal algorithms. With the development of these 
algorithms, the programs that produce pictures are 
becoming remarkably fast, and we may now turn to the 
search for algorithms to enhance the quality of  these 
pictures. 

In trying to improve the quality of  the synthetic 
images, we do not expect to be able to display the object 
exactly as it would appear in reality, with texture, over- 
cast shadows, etc. We hope only to display an image 
that approximates the real object closely enough to 
provide a certain degree of realism. This involves some 
understanding of the fundamental  properties of the 
human visual system. Unlike a photograph of a real 
world scene, a computer  generated shaded picture is 
made from a numerical model, which is stored in the 
computer  as an objective description. When an image is 
then generated f rom this model, the human visual sys- 
tem makes the final subjective analysis. Obtaining a 
close image correspondence to the eye's subjective 
interpretation of the real object is then the goal. The 
computer  system can be compared to an artist who 
paints an object from its description and not f rom direct 
observation of the object. But unlike the artist, who can 
correct the painting if it does not look right to him, the 
computer  that generates the picture does not receive 
feedback about  the quality of  the synthetic images, 
because the human visual system is the final receptor. 

This is a subjective domain. We must at the outset 
define the degree of realism we wish to attain, and fix 
certain goals to be accomplished. Among these goals 
are: 
1. "Real  t ime" display of dynamic color pictures of 
three-dimensional objects. A real time display system 
is one capable of generating pictures at the rate of  at 
least 30 frames a second. 
2. Representation of objects made of smooth curved 
surfaces. 
3. Elimination or attenuation of the effects of digital 
sampling techniques. 
The most  important  consideration in trying to attain 
these goals is the object modeling technique. 

Existing Shading Techniques 

Methods of Object Modeling 
Image quality depends directly on the effectiveness 

of the shading algorithm, which in turn depends on the 
method of modeling the object. Two principal methods 
of object description are commonly used : 
1. Surface definition using mathematical  equations. 
2. Surface approximation by planar polygonal mosaic. 

Several systems have been implemented to remove 
hidden parts for mathematically defined curved surfaces 
[1, 2, 3, 4, 5]. With these systems, exact information at 
each point of the surface can be obtained, and the result- 
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ing computer generated pictures are most realistic. The 
class of possible surfaces is restricted, however, and the 
computation time needed to remove the hidden parts 
and to perform shading is very large. Up to the present 
time, these systems have usually considered the class of 
surfaces represented by quadric patches. Although 
higher degree surfaces are desirable and are sometimes 
necessary to model an object, they have not been taken 
into consideration due to an increase in computation 
time to remove hidden surfaces and to perform shading 
computations. Even when only quadric surfaces are 
considered, the implementation of a real time display 
system using this type of model is too expensive and 
complex. 

A simple method of representing curved surfaces and 
objects of arbitrary shape is to approximate the surfaces 
with small planar polygons; for example, a cone might 
be represented as shown in Figure 1. This type of repre- 
sentation has the advantage that it avoids the problem, 
posed by mathematically curved surface approaches, of 
solving higher order equations. 

Planar approximation also offers the only means of 
reducing hidden surface computation to within reason- 
able bounds, without restricting the class of surfaces 
that can be represented. For  this reason, all recent 
attempts to devise fast hidden surface algorithms have 
been based on the use of this approximation for curved 
surfaces; these algorithms have been summarized and 
classified by Sutherland et al. [6]. The next section dis- 
cusses their influence on the way shading is computed. 

While planar approximation greatly simplifies 
hidden surface removal, it introduces several major 
problems in the generation of a realistic displayed 
image. One of these is the contour edge problem: the 
outline or silhouette of a polygonally approximated 
object is itself a polygon, not a smooth curve. The other 
problem is that of shading the polygons in a realistic 
manner. This paper is concerned with the shading 
problem; the contour edge problem is discussed by the 
author and F.C. Crow in [7]. 

Influence of Hidden Surface Algorithms 
The order in which a hidden surface algorithm com- 

putes visible information has a decided influence on the 
way shading is performed. For  example Warnock, who 
developed one of the first such algorithms [8], com- 
puted display data by a binary subdivision process: this 
meant that the order of generating display data was 
largely independent both of the order of scanning the 
display and of the order of the polygons in memory. 
This made it difficult to perform effective shading on 
curved objects. 

The two major advances in the development of fast 
hidden surface algorithms have been made by Watkins 
[9] and by Newell, Newell, and Sancha [10]. Watkins 
generates the displayed picture scan line by scan line. 
On each scan line he computes which polygons intersect 
the scan line, and then computes the visible segment of 
each polygon, where this segment is the visible strip of 
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Fig. 1. A cone represented by means of planar approximation. 

the polygon, one screen resolution unit in height, that 
lies on the scan line. 

Newell, Newell, and Sancha adopt a different ap- 
proach, using a frame buffer into which the object is 
painted, face by face. The hidden surface problem is 
solved by painting the farthest face first, and the nearest 
last. Each face is painted scan line by scan line, starting 
at the top of the face. 

From the shading aspect, the important  attribute of 
these algorithms is that they both generate information 
scan line by scan line in order to display the faces of an 
object. This information is in the form of segments, one 
screen resolution unit high, on which the shading com- 
putation may then be performed. The main differences 
between the algorithms, from the point of view of 
shading, are (a) the order in which the segments are 
generated, and (b) the fact that Watkins generates each 
screen dot only once, whereas the NewelI-Sancha al- 
gorithm may overwrite the same dot several times. 

Shading with the Polyhedral Model 
When planar polygons are used to model an object, 

it is customary to shade the object by using the normal 
vectors to the polygons. The shading of each point on a 
polygon is then the product  of a shading coefficient for 
the polygon and the cosine of the angle between the 
polygon normal and the direction of incident light. This 
cosine relationship is known in optics as the "cosine 
law," and allows us to compute the shading Sp for a 
polygon p as 

sp = Cpcos(i), (1) 

where Cp is the reflection coefficient of the material o f p  
relative to the incident wavelength, and i is the incident 
angle. 
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Fig. 2. An example of the use of Newell, Newell, and Sancha's 
shading technique, showing transparency and highlight effects. 

Fig. 3. Computation of the shading at point R using the Gouraud 
method. There are two successive linear interpolations: (1) across 
polygon edges, i.e. P between A and B, Q between A and D; and (2) 
along the scan line, i.e. R between P and Q. 

Fig. 4. Gouraud shading, applied to approximated cone of Fig. 1. 
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This shading offers only a very rough approximation 
of the true physical effect. It does not allow for any of 
the specular properties of the material, i.e. the ability of 
the material to generate highlights by reflection from its 
outer surface, and the position of the observer, which is 
ignored. A more serious drawback to this method, how- 
ever, is the poor effect when using it to display smooth 
curved surfaces. The cosine law rule is appropriate for 
objects that are properly modeled with planar surfaces, 
such as boxes, buildings, etc., but it is inappropriate for 
smoothly curved surfaces such as automobile bodies. 
This does not mean, however, that we should abandon 
the use of such a polygon-oriented shading rule and 
search for a different rule for curved surfaces. Recent 
research in shading techniques demonstrates that signifi- 
cant results can be achieved by using the basic shading 
rule of eq. (1) and modifying the results to reduce the 
discontinuities in shading between adjacent polygons. 

1. Warnock's shading. As three-dimensional objects 
are projected onto the cathode-ray tube screen, the 
depth sensation is lost, and the images of those objects 
appear flat. In order to restore the depth sensation, two 
effects were simulated by Warnock: 
I. Decreasing intensity of the reflected light from the 
object with the distance between the light source and the 
object. 

2. Highlights created by specular reflection. 
Warnock placed the light source and the eye at the 

same position, so that the shading function was the sum 
of two terms, one for the normal "cosine" law, and the 
other term for the specularly reflected light. The result- 
ing pictures have several desirable attributes; for exam- 
ple, identical parallel faces, located differently in space, 
will be shaded at different intensities, and facets which 
face directly toward the light source are brighter than 
adjacent facets facing slightly away from the incident 
light. However, the polygonal model gives a discontinu- 
ity in shading between faces of an approximated curved 
surface. When a curved surface is displayed, the smooth- 
ness of the curved surface is destroyed by this discon- 
tinuity. This is clearly visible in Figure 1. 

2. Newell, Newell, and Sancha's shading. Newell, 
Newell, and Sancha presented some ideas on creating 
transparency and highlights. From observations in the 
real world, they found that highlights are created not 
only by the incident light source but also by the reflec- 
tion of light from other objects in the scene; this is 
especially true in the case of objects made of highly 
reflective or transparent materials. In the Newell- 
Sancha model, curved surfaces are approximated with 
planar polygons. Unfortunately, the ability to generate 
highlights is severely limited due to the inability to vary 
light intensity over the surface of any single polygon. 
This problem is apparent in Figure 2. 

3. Gouraud's shading. While working on a technique 
to represent curved objects made of "Coons surfaces" 
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or "Bezier patches," Gouraud [11] developed an al- 
gorithm to shade curved surfaces. With his algorithm, 
a surface represented by a patch is approximated by 
polygonal planar facets. Gouraud computes information 
about the curvature of the surface at each vertex of each 
of these facets. From the curvature, a shade intensity is 
computed and retained. For  example, the shade intensity 
may be computed for each vertex using eq. (1), with i as 
the angle between the incident light and the normal to 
the surface at this vertex. When the surface is displayed, 
this shade intensity is linearly interpolated along the 
edge between adjacent pairs of vertices of the object. 
The shade at a point on the surface is also a linear inter- 
polation of the shade along a scan line between inter- 
sections of the edges with a plane passing through the 
scan line (Figure 3). This very simple method gives a 
continuous gradation of shade over the entire surface, 
which in most cases restores the smooth appearance. An 
example of Gouraud's  shading is shown in Figure 4. 

With the introduction of the Gouraud smooth shading 
technique, the quality of computer-generated images 
improved sufficiently to allow representation of a large 
variety of objects with great realism. Problems still 
exist, however, one of which is the apparent discon- 
tinuity across polygon edges. On surfaces with a high 
component of specular reflection, highlights are often 
inappropriately shaped, since they depend upon the 
disposition and shape of the polygons used to approxi- 
mate a curved surface and not upon the curvature of.the 
object surface itself. The shading of a surface in motion 
(in a computer generated film) has annoying frame to 
frame discontinuities due to the changing orientation of 
the polygons describing the surface. Also the shading 
algorithms are not invariant under rotation. 

Frame-to-frame discontinuities of shade in a com- 
puter generated film are illustrated in the following 
situation. A curved surface is approximated with planar 
facets. When this surface is in motion, all the facets 
which are perpendicular to the direction of the light take 
on a uniform shade. In the next frame the motion of the 
object brings these facets into a different orientation 
toward the  light, and the intensity of the shade across 
their surfaces varies continuously from one end to the 
other. Thus the surface appears to change from one with 
highlights to one of uniform shade. Moreover, the 
position of these highlights is not steady from frame to 
frame as the object rotates. 

Mach Band Effect 
Many of the shading problems associated with 

planar approximation of curved surfaces are the result 
of the discontinuities at polygon boundaries. One might 
expect that these problems could be avoided by reducing 
the size of the polygons. This would be undesirable, of 
course, since it would increase the number of polygons 
and hence would increase both the memory require- 
ments for storing the model and the time for hidden 
surface removal. 
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Fig. 5. Normal at a point 
along an edge. 

Fig. 6. Shading at a point. 
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Unfortunately, because of visual perception effects, 
the reduction of polygon size is not as beneficial as 
might be expected, The particular effect responsible is 
the Mach Band effect. Mach established the following 
principle: 

Wherever the light-intensity curve of an illuminated surface (the 
light intensity of which varies in only one direction) has a concave 
or convex flection with respect to the axis of the abscissa, that 
particular place appears brighter or darker, respectively, than its 
surroundings [E. Mach, 1865]. 

Whenever the slope of the light intensity curve changes, 
this effect appears. The extent to which it is noticeable 
depends upon the magnitude of the curvature change, 
but the effect itself is always present. 

Without the Mach Band effect, one might hope to 
achieve accurate shading by reducing the size of poly- 
gons. Unfortunately the eye enhances the discontinuities 
over polygon edges, creating undesired areas of appar- 
ent brightness along the edges. Therefore unless the size 
of the displayed facets is shrunk to a resolution point, 
increasing the number of facets does not solve the 
problem. Using the Gouraud method to interpolate the 
shade linearly between vertices, the discontinuities of 
the shading function disappear, but the Mach Band 
effect is visible where the slope of the shading function 
changes. This can be seen in Figure 4. The subjective 
discontinuity of shade at the edges due to the Mach 
Band effect then destroys the smooth appearance of the 
curved surface. 

A better shading rule is therefore proposed for dis- 
playing curved surfaces described by planar polygons. 
This new technique requires the computation of the 
normal to the displayed surface at each point. It is 
therefore more expensive in computation than 
Gouraud's  technique; but the quality of the resulting 
picture, and the accuracy of the displayed highlights, is 
much improved. 

Using a Physical Model 

Specular Reflection 
If the goal in shading a computer-synthesized image 

is to simulate a real physical object, then the shading 
model should in some way imitate real physical shading 
situations. Clearly the model of eq. (1) does not ac- 
complish this. As mentioned before, it completely 
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Fig. 7(a). Determination of the reflected light. 
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ignores both the position of the observer and the specu- 
lar properties of the object. Even with the improve- 
ments introduced by Gouraud, which provide remark- 
ably better shading, these properties are still ignored. 

The first step in accounting for the specular proper- 
ties of objects and the position of the observer is to 
determine the normal to the surface at each point to be 
shaded, i.e. at each point where a picture element of the 
raster display projects onto the surface. It is only with 
this knowledge that information about the direction of 
reflected rays can be acquired, and only with this in- 
formation can we model the specular properties of 
objects. It is evident from the preceding discussion, 
however, that our polyhedral model provides informa- 
tion about normals only at the vertices of polygons. 
Thus the first step in improving our shading model is to 
devise a way to obtain the normal to the surface for each 
raster unit. 

Computation of  the Normal  at a Point on the Surface 
The normal at each vertex can be approximated by 

either one of the methods described by Gouraud [I0]. 
It is now necessary to define the normal to the surface 
along the edges and at a point on the surface of a poly- 
gon. 

The normal to the surface at a point along the edge 
of a polygonal model is the result of a linear interpola- 
tion to the normals at the two vertices of that edge. An 
example is given in Figure 5: the normal Nt to the 
surface at a point between the two vertices P0 and P1 is 
computed as follows: 

Nt = tN1 q- (1--t)N0, (2) 

where t = 0 at No a n d t  = 1 a tNx .  
The determination of the normal at a point on the 
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surface of a polygon is achieved in the same way as the 
computation of the shading at that point with the 
Gouraud technique. The normal to the visible surface at 
a point located between two edges is the linear inter- 
polation of the normals at the intersections of these two 
edges with a scan plane passing through the point under 
consideration. Note that the general surface normal is 
quadratically related to the vertex normal. 

From the approximated normal at a point, a shading 
function determines the shading value at that point. 

The Shading Function Model  
In computer graphics, a shading function is defined 

as a function which yields the intensity value of each 
point on the body of an object from the characteristics 
of the light source, the object, and the position of the 
observer. 

Taking into consideration that the light received by 
the eye is provided one part by the diffuse reflection and 
one part by the specular reflection of the incident light, 
the shading at point P (Figure 6) on an object can be 
computed as: 

Sp = Cp[cos(i) (1 - d) +d] q- W(i) [cos(s)] ", (3) 

where: 
Cp is the reflection coefficient of the object at point P 

for a certain wavelength. 
i is the incident angle. 
d is the environmental diffuse reflection coefficient. 
W(i) is a function which gives the ratio of the specular 

reflected light and the incident light as a function 
of  the incident angle i. 

s is the angle between the direction of the reflected 
light and the line of sight. 

n is a power which models the specular reflected 
light for each material. 

The function W(i) and the power n express the 
specular reflection characteristics of a material. For  a 
highly reflective material, the values of both W(i) and n 
are large. The range of W(i) is between 10 and 80 
percent, and n varies from 1 to 10. These numbers are 
empirically adjusted for the picture, and no physical 
justifications are made. In order to simplify the model, 
and thereby the computation of the terms cos(i) and 
cos(s) of formula (3), it is assumed that: 
1. The light source is located at infinity; that is, the 
light rays are parallel. 
2. The eye is also removed to infinity. 

With these two considerations, the values of cos(i) 
and cos(s) of the shading function in (3) can be re- 
written as: cos(i) = kNp / IN~I and cos(s) = uRn, / iRpl 
where k and u are respectively the unit vectors in the 
direction of the light and the line of sight, Np is the 
normal vector at P, and Rp is the reflected light vector at 
P. 

The quantity k N p /  [NpJ can be referred to as the 
projection of a normalized vector N~ on an axis parallel 
to the direction of the light. If  INp[ is unity, the previous 
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Fig. 8. Improved shading, applied to approximated cone of Fig. 1. Fig. 9. Improved shading, applied to the example of Figure 2. 

quantity is one component of the vector Np in a co- 
ordinate system where the direction of light is parallel 
to one axis. In this case, the quantity u R p /  IRp[ can be 
obtained directly f rom the vector N~ in the following 
way. 

Let us consider a Cartesian coordinate system having 
the origin located at point P and having the z axis 
parallel to the light but opposite in direction (Fig. 7(a)). 

We have the following assumptions about the 
model: 
1. The normalized vector Np makes an angle i with the 
z axis, and the reflected light vector Rp makes an angle 
2i with the same axis. 
2. Only incident angles less than or equal to 90 degrees 
are considered in the shading computation. For  a 
greater angle, this means that the light source is behind 
the front surface. In the case where a view of the back 
surface is desired when it is visible, it can be assumed 
that the normal will always point toward the light 
source. 
3. If k is the unit vector along the PZ axis, then by 
simple geometry, it may be shown that the three vectors 
k, Np,  and Rp are coplanar. 
4. The two vectors Np and Rp are of unit length. 

F rom assumption (3), the projections of the vectors 
Np and Rp onto the plane defined by (PX, P Y) are 
merged into a line segment (Figure 7(b)). Therefore, 

Xr/Yr  = X . / r . ,  (4) 

where X~, 2". ,  Yr, and Y. are respectively the compo- 
nents of R~ and Np in the x and y directions. 

From assumptions (1) and (2), the component 
Z .  of Np is: 

Z .  = cos(i), (5) 

where 0 <_ i < 90 degrees. 
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By simple trigonometry, we obtain the following 
expressions: 

Z~ = cos(2i) = 2[cos(i)] 2 -- 1 = 2Z,  2 - 1, (6) 

Xr2q - Yr ~ = [sin(2i)]2= 1 - [cos(2i)] 2. (7) 

From (4) and (7), we obtain: 

X~ = 2ZnXn , Yr = 2Z,  Y , ,  0 < Zn <_ 1. 

The three components of Rp are then known in the 
light source coordinate system. The projection of the 
vector Rp onto the z-axis of the eye coordinate system 
may be found by a simple dot product of the reflected 
vector with this z-axis. The component of Rp on an axis 
parallel to the line of sight is the value of the cosine of 
the angle between the reflected light and the line of 
sight. The value of this cosine will be used in the sim- 
ulation of the specular reflection. 

This method of calculating the direction of the re- 
flected light for each point from the orientation of the 
normal is preferred over the computation of the re- 
flected light vector at vertices and the subsequent inter- 
polation of them in the same way as the normal. It is 
faster and it requires less storage space than the inter- 
polation scheme. 

With the described method, the shading of a point is 
computed from the orientation of the approximated 
normal; it is not a linear interpolation of the shading 
values at the vertices. Therefore, a better approximation 
of the curvature of the surface is obtained, and high- 
lights due to the simulation of specular reflection are 
properly rendered. Examples of application of the 
shading technique are shown in Figures 8 and 9. Figure 
10 compares a display generated by this technique with a 
photograph of a real object. 
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Fig. 10(a). A sphere displayed with the improved shading. 

Fig. 10(b). A photograph of a real sphere. 

Conclusion 

The linear interpolation scheme used here to ap- 
proximate the orientation of the normal does not 
guarantee a continuous first derivative of the shading 
function across an edge of a polygonal model. In ex- 
treme cases where there is an abrupt change in the 
orientation of two adjacent polygons along a common 
edge, the subjective brightness due to the Mach Band 
effect will be visible along this edge. However, this 
effect is much less visible in the described model than in 
the Gouraud smooth shading model. Also, an interest- 
ing fact discussed previously on Mach Band effect shows 
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that this effect is visible whenever there is a great change 
in the slope of the intensity distribution curve, even if 
the curve has a continuous first derivative. When a 
higher degree interpolation curve is used, it will make 
the presence of the edges unnoticeable, although it will 
still give some Mach Band effect. 

When a comparison was made of pictures of the 
same object generated with different shading tech- 
niques, it was found that little difference existed between 
pictures generated with the new shading and the ones 
created with a cubic interpolant curve for the shading 
computation. Furthermore, as time is the critical factor 
in a real time dynamic picture display system, the use of 
a high degree interpolation curve does not seem to be 
possible at the moment with the current techniques to 
compute the coefficients of such a function. 

A hardware implementation of this shading model 
would of course require more hardware than the simpler 
Gouraud method. The Gouraud model needs one inter- 
polator for the shading function. It must compute a new 
shading value for each raster unit, and hence must be 
very high speed to drive a real time display. The model 
proposed here requires three of these interpolators 
operating in parallel. In addition, since the results of the 
interpolation do not yield a unit vector, and since eqs. 
(6), (7), and (8) require a unit normal vector, some extra 
hardware is necessary to "normalize" the outputs of the 
interpolators. This requires a very fast mechanism for 
obtaining square roots. None of these problems is too 
difficult to solve; and judging from the improvements in 
image quality obtained using the new model, it may well 
be worth the extra expense to provide such hardware in 
applications for which real time display is important. 
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Abstract

A new general reflectance model for computer graphics is presented.
The model is based on physical optics and describes specular, di-
rectional diffuse, and uniform diffuse reflection by a surface. The
reflected light pattern depends on wavelength, incidence angle, two
surface roughness parameters. and surface refractive index. The for-
mulation is self consistent in terms of polarization, surface rough-
ness, maskin@hadowing, and energy. The model applies to a wide
range of materials and surface finishes and provides a smooth tran-
sition from diffuse-like to specular reflection as the wavelength and
incidence angle are increased or the surface roughness is decreased.
The model is analytic and suitable for Computer Graphics appli-
cations. Predicted reflectance distributions compare favorably with
experiment. The model is applied to metallic, nonmetallic, and plas-
tic materials, with smooth and rough surfaces.

CR Categories and Subject Descriptors: 1.3.7—[Computer
Graphics]: Three-Dimensional Graphics and Realism; I.3.3—
[Computer Graphics]: Picture/fmage Generation: J.2—[Physical
Sciences and Engineering]: Physics.

Additional Key Words and Phrases: reflectance model, specular
and diffuse reflection, comparison with experiment.

1 Introduction

Photorealistic image generation is an active research area in Com-
puter Graphics. Ray-tracing and Radiosity have been developed to
obtain realistic images for specular and diffuse environments, re-
spectively, However, applications of these methods to general en-
vironments have been hindered by the lack of a broadly-applicable
local light reflection model. To obtain a true global illumination so-
lution of a general environment, a physically based reflection model
of general applicability is needed.

A comprehensive light reflection model is presented in this pa-
per. The model compares favorably with experiment and describes
specular, directional diffuse, uniform diffuse and combined types of

Permission to cnpy withnut fee all nr par[ ot’this matem+l is granted
prnvided [hat thr copies are not made or distributed for direct
commercial advantage. the ACM copyrigh!notice and the title of the
publication and Itsdate appear, and rrolicc is given ihat crrpylng is by
permission nt’ the Assocxatinnfur Cnmput Ing Machinery Tn cnpy
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reflection behavior. The model is analytic and provides a smooth
transition from specular to diffuse-like behavior as a function of
wavelength, incidence angle and surface roughness.

As illustrated in Figure 1, we classify the reflection process from
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Figure 1: Reflection processes at a surface

an arbitrary surface as consisting of first-surface reflections and
multiple surface and/or subsurface reflections. The first-surface re-
flection process is described by physical optics and is strongly di-
rectional. As the surface becomes smooth this part evolves toward
specular or mirror-like behavior. As the surface becomes rough, a
diffuse-like behavior due to diffraction and interference effects be-
comes more important and, at larger roughnesses. it controls the di-
rectional distribution of the first-surface reflected light. The model
partitions energy into specular and diffuse-like components accord-
ing to the roughness of the surface. The multiple surface and sub-
surface reflections sketched in Figure 1 are geometrically complex,
but may be expected to be less strongly directional than the first-
surface reflected light. Hence, they are approximated as uniform
diffuse. Our model leads to analytic expressions suitable for the full
range of surface roughnesses and thus is useful for implementation
in computer graphics.

The present model builds on, and extends, existing models from
optics [3] [5]. h allows for polarization and masking/shadowing ef-
fects. The model extends the geometric optics model of Cook [8]
to the physical optics region, and correctly includes specular reflec-
tion as the surface roughness is decreased. The model is physically
based in contrast to empirical approaches [13].

The following sections provide a conceptual introduction, the
model, a comparison with physical experiments, and example im-
plementations. The mathematical derivation of the model appears in
Appendix A. For unpolarized incident light, the reflectance model
is summarized in Appendix B.
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projected area of the surface (Figure 5)
bidirectional reflectance distribution function
correlation coefficient, equation (48)
complex coefficient of polarization state
distribution function, equation (78)

scalar and vector electric fields
Fresnel reflection coefficient, equation (44)

Fresnel reflectivity
Fresnel matrix, equation (44)
geometrical factor, equation (76)
Green’s function, equation (2)
surface roughness function, equation (9)
intensity
unit tensor
unit imaginary number, i.e., i = ~
wave number, i.e., k = 2r~A

wave vector

unit vector in wave direction
length
length dimensions of the surface
summation index
refractive index
local surtldce normal, unit vector
bisecting unit vector, equation (51 )
incident polarization state vector, equation (34)
Gaussian distribution function, equation (3)
dktance from origin to field point

positional vector to field point
positional vector of a surface point
shadowing function, equation (23)
s and p polarization unit vectors
transformation matrix, equation (39)
wave vector change, equation (20)

——
——
——
——
——
——
=
.
——
——
——
——
——
——
——
——

——
.
——
——
——
.
——
——
——
——
.
——

——
——

J=i
unit vectors in Cartesian coordinates
surface height
area of bounding surface, Figure 2
delta function
horizontal distance vector, equation (28)
polar and azimuthal angles (Figure 5)
wavelength
Gaussian distributed random function
bidirectional reflectivity, equation (4)
directional-hemispherical reflectivity
hemispherical-directional reflectivity
apparent variance of z = ~(z, y)
variance of z = <(x, y)
autocorrelation length, equation (48)
solid angle

Subscripts
ambient
bkecting
bidirectional
directional-diffuse
incident
p polarization
reflected
s polarization
specular
uniform-diffuse
Cartesian coordinates
surface points

Superscripts
local plane
complex conjugate

Table 1: Nomenclature

2 Theory of light reflection of surface reflection models, known as “physical or wave optics”

This section introduces the principal techniques often used to an-
alyze the reflection of an electromagnetic wave by a general sur-
face [3] [5]. The improved model presented later in this paper uses
all of these techniques.

models, to be derived [5]. “Physical opti;s’’-uses a complete “phys-
ical or wave description of the reflection process, thus allowing for
diffraction and interference effects. Wave effects must be included
if a reflection model is to describe both specular and diffuse-like
reflection from a surface.

2.1 Kirchhoff theory

Consider the geometry sketched in Figure 2. According to classical

electromagnetic theory, the scalar electromagnetic field ,?3(~) at an
arbitrary point in space can be expressed as a function of the scalar
field E, and its normal derivative ~.E, /th on any enclosing surface
r. The governing equation is [5]

where G’ is the free space Green’s function given by [ 12]

(2)

Equation (I) is an integral representation of the wave equation and
is known as the Kirchhoff integral of scalar diffraction theory.

For a single reflecting surface, the domain of integration r re-
duces to the area of the reflecting surface. This has allowed a class

I I

)’

t

I

I I

Figure 2: Geometry for application of the Kirchhoff integral. il is
the local surface normal.
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2.2 Tangent plane approximation

For reflection processes, the Kirchhoff formulation reduces the gen-
eral problem of computing the field everywhere in space to the sim-
pler one of determining the field on the reflecting surface, However.
even this is a complex task, and the so-called “tangent plane approx-
imation” is often used. This is done by setting the value of the field
at a given point on the surface to be the value that would exist if the
surface were replaced by its local tangent plane. This is sketched
in Figure 3 where E, and E., are the incident and scattered fields,
respectively, and F’(O) is the local Fresnel (electric field) reflection
coefficient. The approximation is valid when the local radius of
curvature of the surface is large compared to the wavelength, The
reflected field depends on the Fresnel reflection coefficients for hor-
izontal and vertical polarizations, as well as on the local slorre and
position of the refle~ting point.

%A!’=’(e)””
Figure 3: Tangent plane approximation for a reflecting surface. The
statistical pammeters r and ~ for the surface are indicated schemat-
icallyy.

2.3 Statistical surfaces

The complete geometrical specification of a reflecting surface is
rarely known, but information at length scales comparable to the
radiation wavelength is required when the Kirchhoff theory is used.
However, smaII scale variations of the electromagnetic field on the
surface are averaged out when viewed from a distance. This averag-
ing over points on a surface is statistically equivalent to averaging
over an entire class of surfaces with the same statistical description.
Interesting quantities, such as the reflected intensity in a given di-
rection, can then be obtained by a weighted average of the Kirchhoff
integral,

Frequently, the height distribution on a surface (Figure 3) is as-
sumed to be Gaussian and spatially isotropic, Under such condi-
tions, the probability that a surface point falls in the height range z
to : + dz is given by p(~)dz, with a probability distribution

1 ~–(z:p”o~)
p(:). —

V’&,,
(3)

A mean value of J = 0 is assumed and uo is the rms roughness
of the surface. To fully specify an isotropic surface a horizontal
length measure is also needed. One such measure is the aurocor-
re/ation Ierrgfh ~ (defined in equation (48)), which is a measure of
the spacing between surface peaks. The rms slope of the surface is
proportional to cr[~/r,

2.4 Shadowing and masking

The effect of self-shadowing and self-masking by a rough sur-
face (Figure 4) was introduced in computer graphics by Blinn [6]

and Cook [8]. This effect manifests itself at large angles of in-
cidence or reflection, where parts of the surface are shadowed
and/or masked by other parts, reducing the amount of reflection.
Beckmann [4] argued that to first order, the effect of shadow-

1 Shadowing Masking

Figure 4: Shadowing and masking.

ing/masking can be obtained by using a multiplicative factor which
accounts for the fraction of the surface that is visible both to the
source and the receiver. Such a concept was used by both Blinn
and Cook in their geometrical optics approaches, but the V-groove
shadowing/masking factor the y used [20] is first-derivative discon-
tinuous. Marry other shadowing/masking factors have appeared in
the literature. Of these, the one due to Smith [ 16] is continuous in
all derivatives and has been found to agree with statistical numerical
simulations of a Gaussian rough surface [7].

2.5 Discussion

An early comprehensive model of light reflection from a rough sur-
face, using physical optics, was introduced by Beckmann [5]. Beck-
mann applied the scalar form of the Kirchhoff theory, used the tan-
gent plane approximation, and performed a statistical average over
the distribution of heights to get the reflected intensity. The Beck-
mann distribution function was used by Blinn and Cook for their
computer graphics applications.

Stogryn applied a more general, vector form of the Kirchhoff the-
ory, thus taking polarization effects and the correct dependency of
the Fresnel reflectivity into account [18]. Furthermore, he used a
more complete statistical averaging scheme that averages over both
height and slope. However, shadowin~masking was not consid-
ered, and the derivation of the reflected intensity was limited to spe-
cial cases of incident polarization. A more general model, which
accounts for polarization, Fresnel, and shadowing/masking effects,
has been described by Bahar [ I ] [2]. However, it is difficult to im-
plement because it relies on the solution of a set of coupled integro-
differential equations.

Finally, it should be noted that these models were very rarely
compared with experimental results.

3 An improved model

This section presents an improved light reflection model of broad
applicability. Section 3, I summarizes the techniques and key as-
sumptions; Section 3.2 presents the improved model. Details of
the mathematical derivation appear in Appendix A and a full set of
equations for unpolarized incident light in Appendix B.

3.1 Techniques and key assumptions

To develop a general reflection model which avoids many of the lim-
itations of previous models, the overall formulation of Beckmann
was used, but with the following improvements:

● The vector form of the Kirchhoff diffraction theory is used.
This allows, for the first time, a complete treatment of polar-
ization and directional Fresnel effects to be included. Such
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effects are required for a comprehensive formulation. The
model perrnits-abitraryincident polarization states (e.g., plane,
circular, unpolarized, partially polarized, etc.) and includes
effects like depolarization and cross-polarization.

The surface averaging scheme of Stogryn [18] is employed
with its improved representation of the effects of surface
height and slope. Averaging of the Kirchhoff integral is over
a four-fold joint probability function (i.e., height, slope, and
two spatial points).

The scheme of Stogryn [18] is extended to average only over
the illuminated (unshadowed/unmasked) parts of the surface.
This requires a modified probability function with an eflec-
tive roughness, u, given by equation (53). When roughness
valleys are shadowed/masked (Figure 4), the effective surface
roughness can be significantly smaller than the rrns roughness,
ao, especially at grazing angles of incidence or reflection. For
the first time, the concept of asseffective roughness, which de-
pends on the angles of illumination and reflection, is applied.

The geometrical shadowing/masking factor of Smith [16] is
introduced as a multiplicative factor. The function has appro-
priate smoothness and symmetry.

Wktt the above, the model leads to a fairly-complex integrrd for-
mulation. Simplifications result by making the local tangent-plane
approximation and assuming gentle roughness slopes. These as-
sumptions should be realistic for many surfaces over a wide range
of radiation wavelengths. Significantly, the assumptions lead to an
analytical form for the light reflection medel.

3.2 The improved light-reflection model

The light reflection model is presented in terms of the bidirectional
reflectivity pbd, aiso cakd the bidirectional reflectance distribu-
tion function (BRDF). The coordinates are shown in Figure 5, to-

gether with the propagation unit vectors (ka, ~r) and the polarization
unit vectors (ii, ~) for the polarization components perpendicular (S)

and parallel (j) to the incident and reflecting planes (i.e., the (~, 2)
planes). The total BRDF is defined as the ratio of the total reflected

I
I
I
I
I
I
I
I
I /
I .-

/’I ~i x./’1
i ,0”
$.

Figure 5: Coordinates of illumination and reflection.

intensity (i.e., the sum of reflected s and p intensities) in the direc-
tion (0., 4,) to the energy incident per unit time and per unit area
onto the surface from the direction (Oi, @i) [14]. The incident en-
ergy flux may be expressed in terms of the incident intensity Ii and
the incident solid angle &i:

(4)

The BRDF may also be defined for each polarization component
of the reflected intensity (see Appendix A). Equation (4) gives the
frequently-used total BRDF.

We propose a bidirectional reflectivity consisting of three com-
ponents:

Pbd = Pbd, sp + Pbd,dd + Pbd,ud (5)

The additional subscripts correspond to specular (sp), directional-
diffuse (cM), and uniform-diffuse (d) reflection. The first two com-
ponents in (5) result from the first-surface reflection process (see
Figure 1) and are respectively due to specular reflection by the mean
surface and diffraction scattering by the surface roughness. The
third component, taken as uniform diffuse, is attributed to multiple
surface m-djor subsurface reflections.

An example of a light intensity distribution corresponding to
equation (5) is shown in Figure 6. A general reflecting surface is

%Ad!4==
Figure 6: Example of a light intensity distribution.

assumed, with some specular reflection, some diffraction scatter-
ing due to roughness, and some multiple or subsurface scattering.
The specularly-reflected part is contained within the specular cone
of reflection. The diffraction-scattered part shows a directional dis-
tribution which is far from ideal diffuse. The last partis uniform
diffuse (Lambertian).

An analytic form for the first two terms in (5) is derived in Ap-
pendix A. Wkh the local-tangent-plane and gentle-slope assump-
tions for the first-surface reflection process, and for arbitrary inci-
dent polarization, we have:

Pbd,sp =
P. .A=lF12e-g. S.A

COSOid~i COS81dW~
(6)

~(iib, tib, p) S T2 mgme-gE
22

Pbd,dd =
VWT.—. — exp(–

COS 0: . COS Or 167r
—)~!.~ 4m

m.]

(7)

Pbd,ud = a(x (8)

where p, is the specular reflectivity of the surface, A is a delta func-
tion which is unity in the specular cone of reflection and zero other-
wise, IF12 is the Fresnel reflectivity which depends on the index of
refraction (fi(A)) of the surface material [14, p. 100], g is a function
of the effective surface roughness given by

g = [ (2 Tu/A) (Cos 01 + Cos0.)]2, (9)

S is the shadowing function (see equation (23)), F is a function
involving the Fresnel reflection coefficients (see equations (68) and
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(59), (60)), p is the polarization state vector of the incident light (see
equation (34)), [..V is a function which depends on the illumination
and reflection angles (see equation (20)), and a(A) is a parameter to
be discussed later.

For convenience and for the special case of incident unpolarized
light, the governing equations are gathered together and presented in
Appendix B. The directional-diffuse term in this appendix (equation
(7 I )) uses nomenclature to permit comparison with the geometric
optics model of Cook-Torrance [8].

The physical basis of the three reflection components in (5) is
discussed in the following subsections, Before proceeding, we note
that the dependence of the specuku component on o!w, drops out
if equation (5) is converted to an intensity basis by multiplying by
1, cos O,d~,. From (6), the specular term becomes PS1, A, which
is the well known form used in Ray-tracing. The specular intensity
is then independent of d~,, but the directional-diffuse and uniform-
diffuse intensities are proportional to d~,.

3.2.1 Specular contribution: ,ow,,,l,

The specular term accounts for mirror-like reflection from the mean
plane of the reflecting surface. The term is proportional to the Fres-
nel or mirror reflectivity, IFlz. For rough surfaces, the speculw term
is reduced by the roughness and shadowing factors e–(~ and S, re-
spectively.

For a smooth surface, as the wavelength of the incident light be-
comes large relative to the projected surface roughness, i.e., ~ >>
mcos t9,, the specular term is not attenuated since g ~ O and
S ~ 1, Also in this limit, the specular component dominates the
first-surface reflection process, since the contribution from equa-
tion (7) diminishes as g ~ O. For smooth surfaces, equation (6)
reduces m

/F1’/cosO,dw,, (lo)

which is the usual form of the bidirectional reflectivity for a specular
surface.

3.2.2 Directional diffuse contribution: pM,,M

When the wavelength of the incident light is comparable to or
smaller than the projected size of surface roughness elements (i.e.,
A ~ a cos 0, ), the first-surface reflection process introduces diffrac-
tion and interference effects. The reflected field is spread out to the
hemisphere above the reflecting surface. We call this directional
d@ue, to indicate that the field is diffused to the hemisphere but
may have a directional, nonuniform character.

The reflected light pattern given by equation (7) depends on sur-
face statistics through the effective roughness a and the autocol ie-

Iation length ~. For smooth surfaces. as u/J or g approach zero, the
bidirectional reflectivity given by equation (7) diminishes to zero.
For rough surfaces. with a/J or g large, equation (7) describes the
directional distribution of the first-surface reflected light. The re-
flected pattern can be complex with maximal values in the specular
direction for slightly rough surfaces, at off-specular angles for inter-
mediate roughnesses, or at grazing reflection angles for very rough
surfaces.

3.2.3 Uniform diffuse contribution: p~~,,.d

The light reflected by multiple surface reflections or by subsurface
reflections is generally more difficult to describe analytically than
light reflected by the tirst-surface reflection process. This contribu-
tion is small for metallic (opaque) surfaces with shallow roughness
slopes. However, the contribution can be important for surfaces
with large slopes, or for nonmetals if significant radiation crosses the

first surface and is reflected by subsurface scattering centers (e.g..
paints, ceramics, plastics).

Estimates of the multiple-reflection process within surface
V-grooves, based on geometrical optics, have been carried
out [ 10] [ 17]. Also. estimates of the subsurface scattering are avail-
able [14]. The analytical results often suggest that the reflected field
due to these two processes maybe approximated as nearly direction-
ally uniform. Therefore, the multiply-reflected and/or subsurface
scattered light is approximated as uniform-diffuse (i.e., Lambertian),
and we denote it by a(~).

The coefficient a(~) can be estimated theoretically if the V-
groove geometry is applicable, or if the subsurface scattering param-
eters are known. Alternatively, a(~) can be estimated experimen-
tally if equation (5) is integrated over the reflecting hemisphere, and
the results are compared with measured values of the directional-
hemispherical reflectivity. p,f},. This reflectivity is equal to the
hemispherical-directional reflectivity P~d (for the case of uniform
incident intensity [ 14]), and which can be easily measured using an
integrating sphere reflectometer. For the present paper, in the ab-
sence of additional surface or subsurface scattering parameters, or
experimental measurements, we will treat a( A) as a constrained, but
otherwise free, parameter. The constraint is based on energy con-
servation and gives an upper bound for a(~).

3.3 Discussion

The theoretical model described by equation (5) allows specu-
lar, directional-diffuse, and uniform-diffuse reflection behavior as
sketched in Figure 6. The governing equations in general form are
given in equations (5) to (8) and Appendix A, or for unpolarized
incident light in Appendix B. The actual reflection patterns depend
on wavelength, incidence angle, surface roughness and subsurface
parameters, and index of refraction. The model provides a unified
approach for a wide range of materials and surface finishes, and is
in a form suitable for use in computer graphics.

4 Comparison with experiments

In this section we compare the reflection model with experimen-
tal measurements. Appropriate comparison experiments appear
only infrequently in the literature, since well-characterized sur-
faces as well as good wavelength and directional resolution are
required. The measurements selected for comparison consist of
BRDF’s for roughened aluminum [19], roughened magnesium ox-
ide ceramic [19j, sandpaper [9], and smooth plastic [ 1t]. The com-
parisons cover a wide range of materials (metallic, nonmetallic) and
reflection behavior (specular, directional diffuse, uniform diffuse).

Polar comparisons are presented in Figures 7 to 10. Results are
shown in the plane of incidence; the polar angle is Or and the curve
parameter is the angle of incidence 0,. Theoretical predictions are
shown with solid lines and experimental measurements with dashed
lines. The polar radius is the BRDF normalized with respect to the
specular reflecting ray direction, i.e.,

P)),](O,, 0; er. 9,)
pbd(e,, o; Ot, 0)

(1[)

Results for an aluminum surface (very pure; measured rough-
ness: cm = 0.28prn ) are shown in Figures 7 and 8, respectively,
for wavelengths of A = 2.Op m and 0.5pm. These figures illus-
trate the effects of wavelength and incidence angle. The autocor-
relation length and measured hemispherical reflectance were not
reported. Therefore, values of ~ = 1.77pm and a(~) = O were se-
lected as best tits at both wavelengths. Several points can be noted.

179



SIGGRAPH ’91 Las Vegas, 28 July-2 August 1991

.7. ,
,.

‘-[ ‘.
[.”

“i_&_&&---o-–.. . . . . 0.0 0.2 0.4 0.6 0.8 1.0

Figure 7: Normalized BRDF’s of roughened aluminum as ob-
tained from theory (solid lines) and experiment (dashed lines)
for incidence angles of 0, = 10°, 45°, and 75°. J = 2. O#rrz.
This is the same surface as in Figure 8. The surface shows
strong specular reflection at this wavelength.

Figure 9: Normalized BRDF’s of roughened magnesium ox-
ide ceramic as obtained from theory (solid lines) and experi-
ment (dashed lines) for incidence angles of f3~= 10”,45°,60°,
and 75”. J = 0.5prr2. The surface shows strong uniform dif-
fuse and emerging specular reflection.

When aO is small compared to A, as in Figure 7, strong specular re-
flection occurs. The angular width of the measured specular peak
is determined by the solid angles of incident and received light in
the experiments (dw, = do,+ = n/1024). To allow comparisons,
the theoretical peaks have been averaged over the same solid an-
gles. For incidence at 01 = 10°, the reflected pattern displays both
specular and directional diffuse components. In Figure 8, when the
roughness is more comparable to the wavelength, a strong direc-
tional diffuse pattern appears, and for 0~ = 10°,30”,45°, and 60°,
the reflected intensity is maximal at larger-than-specular angles. For
8, = 75°, a specular peak emerges as the surface appears somewhat
smoother to the incident radiation.

A comparison with a magnesium oxide ceramic (very pure; mea-
sured roughness: O. = 1.90Nrrt, but model best fit U. = 1.45~rn)
at A = 0.5,urn is displayed in Figure 9. This surface shows nearly
uniform diffuse behavior at f3, = 10° and an emerging specular peak
for larger values of 0,. The model employed best-fit parameters of
7 = 13.2Prn and a(~) = 0.9, the latter expressing the relatively
stronger role of subsurface scattering as compared to the aluminum
surface. Significantly, the experimental and theoretical trends in
Figures 7 to 9 for both the metal and the nonmetal are in qualitative
accord. Importantly, both materiafs display an emerging specular
peak as the angle of incidence is increased, and, for the metal, as
the wavelength is incremed. Further, the metal shows a strong di-
rectional diffuse pattern, and the nonmetal a strong uniform diffuse
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Figure 8: Normalized BRDF’s of roughened aluminum as ob-
tained from theory (solid lines) and experiment (dashed lines)
for incidence angles of 0, = 10°, 30°, 45°, 60°, and 75°.
J = 0.5pm. This is the same surface as in Figure 7. The
surface shows strong directional diffuse and emerging specu-
lar reflection at this wavelength.

Figure 10: Normalized BRDFs of sandpaper as obtained from
theory (solid lines) and experiment (dashed lines) for normal
incidence, 8, = 0°. A = 0.5pm. The surface shows a large
reflectance at grazing reflection angles.

pattern, both of which are in accord with the model.
A dramatically different reflection pattern is displayed in Fig-

ure 10, corresponding to 220 grit sandpaper at 0, = 0° and J =
0.55pm. Parameters used for the comparison are UO/T = 4.4 and
a(~) = O. For very rough surfaces, only the ratio aO/T is required,
not 00 and r separately [5]. Although the large ratio of UO/T chal-
lenges the gentle slope assumption of the model, the agreement be-
tween experiment and theory is striking as both display large re-
flected intensities at grazing angles of reflection.

A comparison of experiment and theory in terms of absolute
BRDF’s is shown in semilog form in Figure 11 for a smooth blue
plastic at A = 0.46pm. The shape of the specular spikes is deter-
mined by the geometry of the incident and receiving optical systems.
The distributions for four incidence angles reveal a linear combina-
tion of specular and uniform diffuse behavior. Tlris is consistent
with the model (equations (5) to (8)). For a smooth surface with
ao = O, the directional-diffuse term drops out and the specular term
reduces to equation ( 10). The directional-hemispherical reflectiv-
ity at @i = 0° and ~ = 0.46pm was measured (pdh = O.195) and
yields the value a(A) = 0.15 used for the uniform diffuse term in the
model. The agreement between experiment and theory in Figure 1I
in terms of shape and absolute magnitude is encouraging.

In conclusion, the experimentally-measured directional distribu-
tions in Figures 7 to 1I show a wide range of behavior and com-
plexity. The present model describes the major features of the dis-
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Figure II: Absolute BRDF’s for smooth blue plastic as obtained
from theory (solid lines) and experiment (dashed lines) for inci-
dence angles of 0, = 15°, 30°, 45°, and 60°. A = 0.46pn~. This
surface shows a typical smooth plastic reflection pattern with com-
bined specular and uniform diffuse behavior.

tributions

5 Example scenes

The reflection model described by equations (5) to (8) can be in-
corporated in ray-tracing or extended radiosity [15] methods. We
have employed ray tmcirtg. A single reflected ray is used together
with ambient and point source illumination. The reflected intensity
is given by

.\r(

II(A) = ~{lm,)l’.(-’” .s.~+ (Pb(i.dd)t + m]
1,,(,4)

(12)

where .Y1 is the number of light sources. subscript i denotes the
ith light source, the terms inside the braces respectively correspond
10 the three terms in equation (5), p~,,l(A) is the hemispherical-
directional reflectivity of the surface (taken as a function of A only,
and found from experiment or by integrating (5) over the inci-
dent hemisphere), and lU is the uniform ambient illumination. The
directional-diffuse term is included only for light sources. To in-
clude a directional-diffuse term from the environment, a distributed
ray-tmcer or an extended radiosity method [15] must be employed.

Figure 12 displays six aluminum cylinders in front of a brick
wall. Each cylinder is rendered in isolation. Cylinders (a) to (f)
are in order of increasing surface roughness. Other parameters are
T = 3.01[nt for cylinders (a) to (e) and ~ = 16.Oprn for cylinder
(f), and o(A) = 0. Note that (he sharp specular image in the top
faces of the cylinders diminishes, but is not blurred, with increasing
surface roughness, and the image of the Iight source on the front ver-
tical face spreads out. These are characteristics, respectively, of the
specular iurd directional diffuse terms in the reflection model that
are derived from physical optics. Note also that the apparent rough-
ness of a given cylinder varies with viewing angle. The top and lat-
eral edges can appear specular or nearly specular at grazing angles,
even when the vertical face on the front side appears to be rough,
A slight color shift is also apparent for a given rough surface (i.e.,
as A in rro/A varies). For visible light, this is most apparent in the
blue shift on the front faces of the cylinders. The enhanced red shift

of the specular images is not so apparent. Clearly, the specular and
directional diffuse terms of the model vary with wavelength, inci-
dence angle, and roughness, and are responsible for the realism of
the cylinders in Figure 12.

The aluminum cylinders (a) to (c) in Figure 13 illustrate limiting
cases of each of the three terms in the reflection model. Cylinder (a)
in Figure 13 is the same as cylinder (f) in Figure [2. Cylinder (b)
is a smooth cylinder described by the specular term, in which the
reflectance is a function of incidence angle according to the Fres-
nel reflectivity. Specular images are apparent on the top and lateral
edges. (To emphasize the specular images, we have set the ambient
illumination term to zero in rendering cylinder (b), ) Cylinder (a)
represents the directional diffuse term in the limit of UO/A -t ~
with c70/T fixed at 0.16 (i.e., a limiting form for very rough sur-
faces). Cylinder (c) is ideal diffuse and is described by the uniform
diffuse term. Note tbe striking differences between the three cylin-
ders,

Figure 14 illustrates a scene consisting of a rough aluminum
cylinder (at) = O.18pTn. T = 3.Oprn, a(~) = O), a rough copper
sphere (cro = O.13prrz, ~ = 1.2pTn, a(~) = 0), and a smooth plastic
cube (u,, = O. T = 2.0p77t, a(~ = ().551inL) = 0.28), all resting on a
rough plastic table (OO = 0.20pv~. ~ = 2,0pm, a(A = 0.55u7rz ) =
0.28). The cube and table have the same Fresnel reflectivity.

Several effects can be noted in Figure 14. On the faces of the
cube, the specular image varies with reflection angle, an effect
caused solely by the Fresnel reflectivity IFIZ in equation (6), The
specular images on the table top also vary with reflection angle (and
disappear), but this is caused mainly by roughness effects (i.e., e -” )
in equation (6). The cylinder in Figure 14 corresponds to cylin-
der (a) in Figure 12 and displays some of the specular and direc-
tional diffuse characteristics of that image.

Figure 14 gives a hint of the comprehensiveness of the light re-
flection model derived in this paper. Several materials of different
roughnesses appear. A given surface can display specular or diffuse-
like behavior depending on reflection angles and surface properties,
Specular images appear or disappear based on correct physical prirr-
ciples. The high level of realism in Figure 14 is due to a physically-
correct treatment of specular, directional diffuse, and uniform dif-
fuse effects by the reflection model,

6

1.

2.

3.

4.

5.

6.

Conclusions

The general reflection model given by equations(5) to (8). in a
single formulation, describes specular, directional diffuse. and
uniform diffuse behavior. For unpolarized incident light, the
model reduces to the form given in Appendix B. All of the
parameters of the model are physically based.

The model compares favorably with experimental measure-
ments of reflected radiation for metals, nonmetals, and plas-
tics, with smooth and rough surfaces.

The model accurately predicts the emergence of specular re-
flection with increasing wavelength or angle of incidence, or
decreasing surface roughness.

Tfre model predicts a directional-diffuse pattern which can
have maximal values at specular, off-specular, or grazing arr-
gles, depending on surface roughness.

The model is in analytical form and can improve the realism
of synthetic images.

The model can be employed for my-tracing or extended ra-
diosity [ 15] methods.
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(a) 00 = 0.18 (b) oo = 0.28 (c) uo = 0.38 (d) cro = 0.48 (e) 00 = 0.58 (f) a0 = 2.50

Figure 12: Aluminum cylinders  with  different  surface roughnesses. uo is in pm.  T = 3.Opm for cylinders  (a) to (e) and 7 = 16.Opm  for
cylinder(f). Note  that  the specular and directional-diffuse  reflection characteristics  vary with  reflection angle and roughness.

7. The  model highlights  the need for tabulated  databases of pa-
rameterized  bidirectional  reflectivities.  The  parameters  in-
clude two surface roughness parameters  (a~, T), the index of
refraction (as a function of wavelength),  and the constrained
parameter  a(X). The latter can be inferred from measured
hemispherical  reflectivities.

In conclusion, the reflection model is comprehensive,  physically-
based, and provides an accurate transition  from specular  to diffuse-
like reflection. Further,  the model is computable  and thus  useful for
graphics applications.

(a)00 = 2.5 (b)uo  = 0.0 (c) diffuse

Figure 13: Aluminum cylinders  in extreme limiting  cases. Each
cylinder  corresponds  to one of the three terms in the reflection
model. 00 is in pm. (a) Directional  diffuse reflection; (b) Ideal
specular  reflection; (c) Uniform diffuse (Lambertian)  reflection.
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A Appendix: Derivations

A.1 Reflected intensities

The reflected intensities for thes and p components of polarizations
are given by [14][ 18]

R2
dZr(Or, &; Oi, @,), = ~ ,cos O < Ii. fi.(@12 >

r

R2 .
dIr(er, &;o,, @,)T) = ~ co~o < Ijr Er(fi)\2 > (13),. r

where the coordinates are m shown in Figure 5, fi,(~) is the re-

flected field in vector form, R is the distance from the origin to
an arbitrary point in space, A is the area of the reflecting surface
projected on the x-y plane, and s_,, pr are unit polarization vectors,
given by

k,xi
&=-

Ikr x ;I

P. = S, X kv (14)

which are normal and parallel, respectively, to the plane formed by
the viewing direction and the mean surface normal. The symbol <>
denotes an average over the joint probability distribution function
of the random rough surface characterized by

2 = ((z, rJ). (15)

The reflected field can be expressed in terms of the scattered field
on the surface by using the vector form of the Kirchhoff diffraction
theory [12]:

E.(E) = ~ (j-irk,).

/
e -ZET’{-iZr x (~, ~ fi)-(~ x E) x fi}dr

r
(16)

where ~,, ~r are wave vectors in the incident and reflection direc-
tions, Ikl = 27r/A is the wave number, F is the position vector for

a point on the surface, and the tensor ~ – k~k, = s,.4, + P,pr is
introduced to to make the reflected field transverse.

Substituting (16) into (13), we have

1
dis = J—,kr.7<1 -

A COS f),(47r)2 . e

{ik@r (fi., x h)+~: [(V x ~,) x fi]}drl’ >

1
dIP =

A COS &.(4m)2 /
< I e-’ir 7.

{2ksr. (E, Xfi)-p; [(v x E,)x fiJ}dr12 >

(17)

To evaluate the right side of ( 17), the surface element dr is ex-
pressed in terms of the planar surface area dA = dr dg by

dr = dA/(n . i) (18)

Further, the squares of the absolute values of the integrals in ( 17)
can be expanded in terms of double surface integrals. We find

/
<1 e -’~’”~{}drl’ >=

r
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< HdA ] dAze
—17(F,

A

(
e

_zi,.Fl{}j (e-J.F2{

F2)

)
*

, /(ii, . i)(iL2 . 2) >

(19)

where u is the wave vector change
. .

?7= k(kr – k,), (20)

* denotes a complex conjugate, {} refers to the terms in braces
in (17), and the subscripts refer to points on area elements dAl and
dA2 .

The <> in (19) commutes with the surface integral and a term
of the form

<e -13”’(+~’){}l{} ;/(til “ Nfiz 2) > (21)

results. Since the surface is assumed to be isotropic and stationary,
(21 ) is a function only of xl – X2 and w – yz. Thus, by making the
change of variables

Z’=XI— Z2
//

x = X2

Y’=?J– Y2 ~“ = y2 (22)

the integrals over z“ and y“ may be carried out separately to give
a factor S A, where S is the fraction of the surface that is both il-
luminated and viewed and represents the shadowing function given
by [16]:

s = S,(ea) . we,) (23)

where

St(f?i) = (1 – +erfc(
T cot oi
~))/(A(cot @t)+ 1)

1 T cot e,
sr(e,) —))/(A(cot O,) + 1)= (1 – ~ erfc( ZOO

(24)

and

(
A(cot8)=~ ~.~ – erfc( ~)) (25)

Hence, the reflected intensities in ( 17) are

s
+02 +m

dI, = JJ dz’dy’ e-’c”fi13, (26)
Cos 0.(4,T)2 _m _=

s
+Cxz +Cc

dIP = // dz’dy’ e-iz’;BP (27)
Cos e,.(47r)2 _ ~ _m

where
~= x’? +y’y (28)

and

B, = < e-’u’;’c’ -c2)F(iil, fi2), >

Bp = <e
–[J.:(CI –tl)~(fi, , ti2)p >

(29)

where

.++-
~(fi,, fil)p = e–’k’”(r’ ‘r2)/(7i[ .i?)(iiz . .2)

~({ik{, ~(-E.x ii) -- P. [(v x E) x fil}),

~({M. (ES x ?i)-p. [(v x Es)x ?d});

(31)

The functions B, and BP in (29) depend only on z’ and y’. No-
tice that dIs and dIP are the s and p polarized reflected intensities,
respectively. The total reflected intensity, as used in equation (4), is
given by

dIv = dI, + dIp (32)

A.2 Tangent plane approximation

The reflected intensities in (26) and (27) are expressed in terms of

the scattered field ~, on the surface. In turn, E+Sdepends on the
incident field, and may be related to the incident field by using the
local tangent plane approximation.

For the case of a unidirectional incident field, we have

k, = EOe*Ez”Fp (33)

P = Ca;t + Cp@i (34)

where ,?30is the wave amplitude, p is the polarization state vector of
the incident radiation, CS,CPare called the polarization coefficients),
and 4:, pi are unit polarization vectors with respect to the plane of

incidence (ii, 2). The unit vectors are given by

k,xi
~i=-

/k, X 51

Pi = ~% X k, (35)

Equation (33) can be written in the more compact matrix form

(36)

&,;, decompose into incident local pol~zation unit vectors ~~,

~~ with respect to the local incident plane (ki, h), given by

kiX?i-ns,=—
Ikt x nl

P? = Xxk (37)

Therefore,

(:)=Ttn”(o (38)

where Ti. is the transformation matrix from incident coordinates to
local coordinates

(39)

Substituting (38) into (36), we have the incident field in terms of
;:, p: as

(40)

Reflections of the 3;, j~ fields are found from the local Fresnel re-
flection coefficients for each component of polarization, i.e.,

IFor example: for s polarization, c. = 1.0, CP = 0, for p tmlarization,
Cs=o!cp=l.
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where F,, and & are the Fresnel reflection coefficients for s and
p polarizations, respectively [14, p. 100]. The unit vectors .;;, ~~
are the local polarization unit vectors for reflection from the tangent
plane:

i-,. x il.,, _
.s,. – —

Ii-rx ill
(42)

.,!_
P. – i; x i-,.

where ~,. is the unit vector in the specular direction from the tangent
plane, given by

tip = i, – 2(i, fl)ri (43)

Using the Fresnel matrix

we have in more compact form

($)+’($)

(44)

(45)

From equations (40) and (45 ), the scattered field on the surface
can be expressed as a linear combination of the Fresnel reflection
coefficients

(46)

The scattered field is a function of the incident polarization state,
the local sutiace normal it, the Fresnel reflection coefficients -F, and
F;, of the sutiace, and the incident and reflection directions k,. k,.

A.3 Representation of thesurface

Specification of the surface topography is required to carry out
the surface integrals and surface averages appearing in equa-
tions(26). (27) and (29). Without Iosinggenerality, we assume the
surface to be Gaussian distributed [5], i.e., we assume the surface
height in ( 15) 10be a stationary normally distributed random process
whose mean value is zero, In addition weassume thesurface to be
directionally isotropic. Inappropriate two-point joint probability
function is given by

whererz =(.rl–,rj )~+(yl– yl)z, rr~isthe variance ofzl =C(.rl,yi)
and Z2 = ~(.r2, yZ), and C’(r) isthe correlation coefficient, which is
assumed to be [5]

~’(r) = f-:

where ~ is the autocorrelation length.
The parameters crc,and T are the only

required for the surface integrations.

(48)

two surface parameters

A.4 Analytic evaluation of the integrals

Substituting (46) into (29) to(31 ), L?,and f?;, are expressed in terms
of known quantities and depend on the surface only through the nor-
mals n 1and n? at two surface points. Further. the integrals in equa-
tions (26) and (27) can be written as:

+x +x

// f–’;”’i<f“;’”<’‘f ’’Firzl, n:, p) > d.rd,rj
—x —x

(49)

Stogryn [ 18] has shown that an integral and average of the form in
(49) can be approximately evaluated under either of the following
two conditions:

● the surface is very rough (i.e., (v.c)~ >> I )

. the surface has gentle slopes (i.e. ( ~ ) << 1)

As a result, (49) reduces to

+x +x
F(fif,, rit,, p)

II
c “-’i”< < f-’; ’’~” -~” > d.r(iy

—x .—%
(50)

where ~ is evaluated at iu,, which is the unit vector bisecting ~“, and

~,. given by

h, – i,
(51)

“b= ,~v _ ~,,

Furthermore, the <> in (50) can be shown to be [5]:

<(
—Lr. z(:, —fjl >={ —(,.-I-II ~’{vll (52)

where C’(q) is given by (48).
Note that u in (52) is the effective surface roughness, not ~0.

This is because the surface averaging is carried over illuminated
and visible parts only, rr is given by [4]:

ml)m. (53)

where zo depends on (3,. and 0, and is the root of the following
equation

and

(54)

The double integral in (50) can be evaluated analytical y [5]:

+x +-x

Iv = H c “<’7 <e-’i’’c’ -<” >dxdy
—Z. -x

“’$%+”exp ( – l~Vr>/4m) (56)

,,,. I
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where LZ, L ~ are the dimensions of the reflecting surface. Since
we are only interested in cwzs when Lm, LY >> A, the firstterm is
nonzero only in the specular direction and zero otherwise. For the
case of unidirectional incidence with solid angle&i and Lx, Lv >>
A, the averaged form of the first term in (56) is

A SZ~C2(Vz~z)Si~C2(Vy~9) -+ (27r~)2 . A/(c@ - COSL%.) (57)

Hence, (56) becomes

N = e-g ~(27rJ)2 A/(dw, . COSO,)+

arbitrarily-polarized incident light. In most applications, however,
we are only interested in the BRDF for unpolarized incident light.
The expressions for the BRDF am greatly simplified for this spe-
cial but useful case. For convenience, the BRDF equations for un-
polarized incident light are presented in this appendix. The reader
should refer to Figure 5 and the nomenclature list in Table 1 for the
angular coordinates and other physical parameters that appear in the
reflectance model:

Pbd (~, ~0, T, ii(~), a(~))

Pbd,sp ● Pbd,dd ● Pbd,ud (69)

P. A
COS6adW~

(70)

Pbd .

.

.

w

x gme–g
XT2 — . exp (–v~vr2/4m) (58)~!.~

m. I

Next, 3, and YP in (30) and(31 ) are evaluated. First, fij, fiz are
replaced by tib defined in (51). Then they are substituted into (30)
and (31 ). After lengthy vector manipulations, we find

~(iib, fib, p). = b . [C,M., +cpA!fsp[2 (59)

~(ftb, &, p)P = 6. IC,MPS + CPMPP[2 (60)

where

M88 = (Fs@t ~r)(jr ~k~)+F’P(~i ~kr)(~r ki)) (61)

M,, = - (l’s(&i ~&)@r ~ki) - Fp(ji ~r)(~r ~ii)) (62)

MPP = (Fs(~i ~kr)(sr ~Li)+ Fp(jt ~Lr)(jr ~k.)) (63)

M,. = (F.(ji ~~r)(;r ~ii) - Fp(~t ~kr)@r ~ii)) (64)

Pbd,sp

IF12 G.S. D—.
T

(71)
COSO; COSOr

Pbd,dd

Pbd,ud

P.

A

a(~) (72)

Iqz . e-g . s (73)

{

1 if in specular cone
O otherwise

(74).

;(F:+F;) = f(e,, e., n(A)) (75).

G

[(ii . kr)2+ ($, . i~)z] (76)

S(ea, e. , uo/T) (77)s

D
=272 w

E

gme-g—. —
4~2 . exp( –V&T2 /4m) (78)m!. m

The Fresnel reflection coefficients F. and FP in (61) to (64) are

evaluated at the bkecting angle given by Cos– i (Ik, – k, 1/2).
Using (59)-(65) and (58) in (26) and (27), we find an analytical

expression for the reflected intensity

dI, =
IE012

x(fib, fib, p). . N
Cos r9,(47r)2

dIP =
IEO[2

~(hb, fib, p)P . N
Cos er(4?r)*

(66)

where the square of the absolute value of the incident field amplit-
ude, IE012, is related to the incident intensity Ii by

IE012 = I,&, (67)

Note that the right side of (66) has the correct dimensions of inten-
sity since N has dimension [L*] whereas the 2% have dimension
[L-2].

Finally, substituting (67) into (66) and using (4) and (32), we get
exactly the firsttwo terms in (5), given that

.?@i, & p) = fi(fib,fib,p)~ +$’(?&, &,, p)P (68)

since the BRDF defined in (4) is the total BRDF, which is the sum
of the BRDF’s for the reflected s and p components.

B Appendix: Governing equations of the re-
flectance model for unpolarized incident
light

Equations (5) to (8) together with the defining equations for all
the symbols in (5) to (8) completely define the general BRDF for

186

~=1

[(2~&/A) (COSOi + COSOj.)]2 (79)

(80)

9

u

.

. cm. [1 +(3)2]–”*
Uo

;(K,+K.) . exp(– ~) (81)
0

tZln01 f erfc( & COtd~) (82)

JIr
— Zo
2

.

.

=

.

tan0.. erfc( & cot Or) (83)

(85)

k,xri

m’
p,=;rxkr (86)

where ii is the index of refraction, p= is the specular reflectivity,
A is a delta function, IF I* is the Fresnel reflectivity for unpohw-
ized light [14, p. 100] evaluated at the bisecting angle given by

COS-’ (Ii, – ki 1/2), G is a geometrical factor, S is the shadow-
ing/masking factor given in equation (23), and D is a distribution
function for the dwectional diffuse reflection term.
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ABSTRACT

A new device for measuring the spatial reflectancedistributionsof surfaces
is introduced, along with a new mathematical model of sniaorropic
reflectance. The reflectance model presented is both simple and accurate,
permitting efficient reflectance data reduction rasdreproduction. Tire vali-
dity of the model is substantiated with comparisons to complete meaarsre-
mems of surface reflectance functions gathered with the novel
retlectometry device. This new device uses imaging technology to capture
the entire hemisphem of reflected directions simttkarreously, which greatly
accelerates the reflectance data gathering process, making it pssible to
measure dozens of surfaces in the time that it used to take to do one.
Example measurements and simulations are shown. and a table of fitted
parameters for several surfaces is presented.

General Terms: algorithms, measurement, theory, verification. CR
Categories and Descriptors: 1.3.7 Three-dimensionalgraphics and rw#-
ism, 1.6.4 Model validation and analysis. Additional Keywords arsd
Phrases: reflectance. Monte Carlo, raytracing, shading.

1. Isstroduction

Numerousempiricalandtheoreticalmodels for the local reflection of light
from surfaces have been introduced over the past 20 years. Empirical and
theoretical models have the same goal of reproducing real reflectance func-
tions, but the respective approaches are very different.

An empirical model is simply a formula with adjustable parameters
designed to fit a certain class of reflectance functions. Little attention is
paid to the physical derivation of the model, or the physical significance of
its parameters. A gmd example of an empirical model is the one
developed by Sandford [Ssrtdford85]. This is a four parameter model of
isotropic reffeztion, where the pararrtetem must be fit to a specific set of
reflectance measurements. While two of these parameters cormspood
roughly to measurable quantities such as total reflectance and spectdsrity,
the other two parameters have no physical significance and are merely
shape variables that make the specular lobe of the model more closely
match the &rs.

In contrast to an empirical model, a theoretical model attempts to get
closer to the true distribution by starting fmm physical theory. A good
example of a theoretical model is the one derived recently by He et al
[He91 ]. This is also a four parameter isotropic model, but afl four parame-
ters have some physical meaning and can in principle be

measured separately from the surface reflectance distribution. In prac-
tice, however, it is usuaklynecessary to fit even a theoretical model to
measurements of reflectance because the physical parameters involved
are difficult to measure, This js the case in the f-fC-To~ce m~el,

since measurements of the requisite surface height variance and auto-

Au1hOr’$addrsaw I cyclotron Rd., 9.)-3 I t 1.%kcIcy.CA 94720,

E-mail: GJWsrd@lbl.gOv

correlation distance variables are impractical for most surfaces. Tlsus,
the physical derivation of such a model serves primarily to inspire
greater confidence. and is not necessarily a practi~al advantage when it
comes to fitting measured data. As in all scientific disciplines. if the
themy does not fit the data, then the theory must be discarded, not the
data.

But where is the data? There is almost no published &ta on surface
reflectance as a function of angle, and what little data is available is in
the form of plane mestsurerrwnts of isotropic surfaces with no mtatiortal
variance in their reflectance functions. Tbus. we have little to compase
our reflectance models to, and no real assurance that they are valid
T?ris means that we may once again be falling back on the “if it looks
reasonable then it’s OK”’ philosophy that has misdirected computer
graphics so often in the past.

Why is the oldest specular model, the one introduced by Phong in 1975
[Phong75], still the most widely used to this day? Tlris model is neither
theoretically plausible nor empirically correct. Any renderings that use
the straight Phong model am most likely wrong because the model is not
physical, and more light may be emitted than is received (for example).
Tlte sole virtue of the Pbong model is its mathematical simplicity.

Simplicity is indispensable in computer graphics. Simplicity is what
permits fast renderings and hardware implementations. Without it, a
reflectance model is little more than a novelty, Even a relatively
straightfonvard model such as the one developed by Torrance and Spar-
row [Tome67) and tailored for rendering applications by Blinn
[Blinn77] and later Cook [Cook82] has been undemtilized in computer
graphics due to its moderately complex form. More recent introductions
by Poulin and Foumier [Poulin90] as well aa He et al [He91 ] are even
more complex. what is really needed for computer graphics is a simple
reflectance model that works reasonably welI for most materials.

Our goal in this paper is not to present the ultimale mathematical model
of reflectance. but to provide a simple formula that is physically valid
and fits measured reflectance data. Here we will present both a new
methcd for measuring isolropic and anisotropic refktance distributions
and a mathematical model that fits these data with both accuracy and
simplicity.

2. Definition of the BRDF

The interaction of light with a surface can be expressed as a single func-
tion, called the bidirectioml reflectance distn’bution function, or BRDF
for shorl [Nicodemus77]. This is a function of four angles, two incident
and two reflested, as well as the wavelength and polarimtion of the
incident radiation. For the sake of simplicity, we will leave wavelength
and plsrization out of our equations, but keep in mind that they we
contained implicitly in the function pM, which is defined in terms of
incident and reflected radiance by the following integral:

lx xf2
L, (9,.0, )s J J .L,(e,,tIj) PM(O,.Oj;%,0, ) COS9,sinfr( de, d41, (1)

00

IW2 AcM-()-x9791-479 -l/92 /m7/()265

where: $ is the =imutfral angle measured about the surface normal

L, (e, ,$, ) is the reflectedradiance (watts/sreradiart/nteter2)

L, (ei ,$i ) is the incident radiasxe

Phdei TO,S AL) is the BRDF(steradian-’)

265
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The fimction PM is bidirecriorud because the incident and reflected
directions can be reverzed and the function will return the same
value. Tlsk arises tkrm the fact that the physics of light is the same
mn backwards ~ forwards, which is why light-backwardsray trac-
ing works [Whhted80].

3. Measuring the BRDF of a Surface

A device for measuring BRDFs is called a grwriorqfectomerer. The usual
design for such a device incorporates a single photometer that is made to
move in relation to a surface sample, which itself moves in relation to a
light source, afl under the control of a computer. Because BRDFs are in
general a function of four angles, two incident and two reflcct~ such a
device must have four degrees of mechanicalfreedom to measure the com-
plete timction. This requires substantial complexity in the apparaNS and
long periods of time to measure a single surface. A typical
goniorethxtometer srrangemerrr,designedby Murray-Coleman and Smith
[Mumsy-Colemrm90], is shown in Figure 1.

-rxkrnmo.

Figure 1. A conventional gonioreflectoroeterwith movable
light source and photometer.

As art sdtemariveto building such a gonioreflectometer, there are severat
Iaba in North America where one cart send a surface sample for BRDF
characterization. For a few hundred dollars, one cats get a three plane
measurement of an isotropic materist at four or five angles of incidence.
\# isosof material has a BRDF that is independent of rotation about the

Therefore, only one @i direction is sampled.) Unfor-
tunately, a comprehensive BRDF measurement of an anisotmpic surface
typicatly costs a few rhousand dollars. (An anisotropic material reflects
light differently at different angles of rotation, thus multiple @i dimc-
tiorts must be sampled.) Because of the difficulty and expense of the
BRDF measurements fhemselvcs, only the very richest research PM-
grams can afford their own data. This data is essential, however, for the
correct modeling of surface reflectance.

3.1. An Imaging Gonioretlectometer

Tbe Lighting Systems Research Group at Lawrence Berkeley Laboratory
has developed a relatively simple device for measuring BRDFs that uses
imaging technology to obtain results more quickly and at a lower cost
than conventional methods. This irnogirtg goniorejlecrometer has been
developed over the past three years and represents an important advance
towards the more practical characterization of BRDFs for lighting simu-
lation and computer graphics. It is our hope that other laboratories and
research institutiona will construct tfilr own versions of this apparatus
and thereby make BRDF measurement a more common and economical
practice.

The basic arrangement of the LBL imaging gonioreflectometer is shown
in 13gute 2t. Tire key optical elements are a half-silvered hemisphere or
hemi-ellipsoid and a chargeasupled device (CCD) camera with a
tisheye lens. Combined, these elements take care of the two degrees of
freedom handled by a mechanically controlled photometer in a conven-
tional gonioreflectometer. Light reflected off the sample surface in

tA U.S.patentis pcndhg on Ihs imaging gonioWlecbmcter. If grsnred, k ps-

tem will restrict other parents on similar devices, but will nol otktwise limit rhe

fms availstritity of the invention since it was dsvelopcd under Depsnrnem of Erer-

gy funding.
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F~re 2. The LBL imaging goniordleztorneter.

holder A is collected by the hetrtkpherical mirror and reflected back into
the fisheye lens and onto the CCD array B. By frxusing the lens at one
half the hemisphere radus, a near perfect imaging of the reflected angles
takes place. (See ray diagram in Figure 3.) Because of tMs highly
efficient collator arrangement, the light source does not have to be very
bright to obtain a good measurement, and cart thus be optimized for col-
limation to get the best possible angular resolution. In our devia, a 3-
watt quartz-halogen lamp is used with so optically precise parabolic
reflector to produce a well collimated beam. White light is preferable
for photopic measurements, although art array of colored filters may be
used to measure the spectral dependerw of the BRDF. The herniiphere
is half-silvered to allow the light beam to illuminate the sample, and so
exterior bafffe shields the camera from stray tilation. Tbii unique

~gement of light sousw ~d optics allows rctmretlcction (fight
reflected back towards the light source) and transmission to be measured
as well.

The incident ei and $i angles are controlled mechanically by pivoting
the light source arm at point C and the sample holder at point A, respec-
tively. In our current prototype, the light source is moved by a
computer-contmlled motor during &ts collection, and the sample is
rotated manually. Because the hemisphere of reflected directions is cap-
tured in a single image, data collection proceeds quite rapidfy and a
comptete BRDF can be recorded in a few minutes, including time for
manual rotation of the sample.

3.2. Calibration and Data Reduetion

All measurements are made relative to a standard diffuse sample and a
background measurement. The background measurement is made with
the source on but without any sample in fhe holder (using she dark rtmm
behind to simulate a black body), and is subtracted from the other meas-
urements to reduce the effects of stray and ambient light. The standard
sample measurement is used as a basis for obtaining absolute reflectatwe
vahtes using she following simple equation at each image poirw

where

P.- is the total diffuse =fiectmce of the standard sample

The ability to measure absolute BRDF values directly is an important
feature of the imaging gorrioreflectometer. Most other devices rely on
auxiliary measurements of directional reflectance (ie. total reflectance for
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Fire 4. An image  captured  by the  gonionflectometer
from an unfinished  aluminum  sample.

Figure  3. Imaging  goniorefkctometer  geometry.  Light
reflecfed  by  the sample  in a specific  direction  is focused  by
the  hemisphere  or hemi-ellipsoid  through  a fisheye  lens onto
a CCD imaging  array.

light  incident  at some @,,g,  )) and  numerical  integration  to arrive at
absolute  quantities.

Recovering  the  reflected  angles  from  pixel locations  in the captured
image  is accomplished  in two  steps.  The first  step  is to determine  the
mapping  from  image  point  locations  to the lens incident  direction.  This
is a function  of the  particular  fisheye  lens used,  the camera,  and the
video  capture  board.  Since  this  mapping  varies  so much  from one
implementation  to the next  and is easily  measured.  we  will not discuss  it
any  further  he=. The second  step  is to compute  the target  reflection
angles  from  these  camera  incident  angles.  Rgure 3 shows  the geometry
involved,  and after a bit  of trigonometry  one  can  derive  the following
approximation:

r, = D sin@,  sine,  + dDZsin2@,  sin20,  + R2 - D*

8, = cos-’
L ’

r, case,

r,‘co~-g~  sin28,  + (r, sin$=  sine,  - 2D j2 + r,’ c0S2ec

[

1 (3)

I@,  = tad rc sin+,  sine, - Wr, co*< sine,
3

where:

8, is polar  angle  relative  to target

Q, is azimuthal  angle  relative  to target,  right  is 0”

ec is polar angle  relative  to camera

4, is azimuthal  camera  angle.  right  is 0“

R is radius  of sphere  or approximate  radius  of ellipsoid

D is one half  the  separation  between  target  and  camera  centers

r, is an intermediate  result which  is the distance  from  camera  to
reflector

notes:

The arctangent  m the  above  equation  should  be  computed  using
the signs  of the numerator  and  denominator  to get a range  of 360”.
Many  math  libraries  provide  a function  named  atan  for this pur-
PO=

The above  equations  are a good approximation  both for hemis-
pherical  and hemi-ellipsoidal  reflectors  as long as D is small in
relation  to R.

The  image  captured  by our gonioreflectometer  for a piece  of unfinished
aluminum  illuminated  at (0, ~ii#up,oo)  is shown  in Figure  4.
Although  the image was  reduced  before  data  reduction  to a resolution  of
108 by 80 pixels,  there.  is still much  more.  information  than is needed  for
an Bccurate  lighting  simulation.  Also. since  two or more  f-stops  may be
used to capture  the full dynamic  range  of the BRDF.  then is often
redundant  information  where  the useful  ranges  of exposures  overlap.
We therefore  apply a program  to eliminate  crowding  of data  points  and
insure  that  the  peak is recorded  at a high  enough  angular  resolution
while  the  rest  of the usable  distribution  is recorded  at a uniform density.
A data  fitting program can then be used  to match  the reduced  data  set  to
a specific  relktance  model.

3.3. Measurement  Limitations
Our current  implementation  of the imaging  gonioreJlectometer  k two
main  limitations  in its  measurement  abilities.  First,  we  are  limited  in
our ability  to measure  the reflectance  function  near  grazing  angles,  due
LO the size  and  shape  of our reflecting  hemisphue  and  the size  of our
sample.  Our present  hemisphere  is formed from acrylic  plastic  and its
optical  properties  are  less  than  perfecf espzcially  near  the edge-s.  It
should  IX possible  to partially  overcome  this limitation  by placing  the
sample  at right angles  to its  current  configuration  and illuminating  it
through  the target  holder,  but  this has not yet  been  tied. The  ultimate
solution  would be to go to a larger, more  precise  hemisphere  and  a
larger  sample  target

The second  limitation  is our inability  to measure  more.  polished  surfaces
with sharp  specular  peaks.  Again. the optical  precision  of our  hemi-
sphere  is a problem,  but  so  is the finite  collimation  of our  light source.
A highly uniform,  collimakd  light source  is required  for  the measure-
ment of polished  surfaces. That is why many  commercial
goniorellectometers  employ  a laser,  despite  the laser’s  inability  to yield
spectrally  balanced  measurements.  By using  an  incandescent  sotuce
with an even  smaller  filament,  it should  be possible  to measure  more
polished  surfaces  without  resorting  to a laser.

Note  that  the BRDF  of a perfectly  smooth  surface  is not directly
measurable  by any gonioreflectometer.  since  it is a Dirac  delta  function
with an  infinite  value at a single  point.  Measuring  such  a BRDF of such
a surface  is not  required  however,  since  the physics  of smooth  surfaces
are  well understood  and  measurements  of total  reflectance  are  adequate
for their characterization.

4. Modeling  Anisotropic  Reflectance
Armed  with a device  that  can measure  anisotropic  relktance  functions
economically.  we need  a mathematical  model  that  can be lit to our
newfound  data.  Using  the data  directly  is impractical  because  it requires
too  much  memory,  and  oftentimes  the data  is noisy  and not complete
enough  to cover  the entire  domain of the  BRDF. We could  represent
the BRDF  as a sum of 100 or so terms  in a spherical  harmonic  series,
but this would also be exoensive  in terms  of computation  time and of
memory  [Cabral87][Sillion91]. We would prefer  a model  that  tits the.
data  with as few parameters  as possible.  Ideally.  these  parameters
would be either  physically  derived  or meaningful  so  that  they  could  be
set manually  in the absence  of any data  at all.

Many  models  have  been  suggested  for isotropic  rcflcction,  but only a
few models  have  been  published  for  the more  general  anisotropic  case.
Kajiya published  a fairly  robust  method  for  deriving  BRDFs  of metals
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from surface microstructure [Kajiya85]. However, his approach is not
amenable to fitting measured reflectance data because the Pararntir
space is too large (ie. all possible surface microstnrcturcs) and the
BRDFs take too long to compute. Poulin and Feurrtiir devcfoped a
model based on cylintilcal seratchcs that is better suited D%din90]. but
their mcdel is reatrictcd to a apeci6c microstructure with cress-sectional
uniformity, and its evaluation is still somewhat expensive.

Our goal is to fit our measured reflectance data with fhe simplest empiri-
cal fonrtufa that wifl do the job. If we cats develop a model with physi-
cally meaningful parameters without adding undue complexity, so much
the better.

4.1. The Isotropic Gaussian Model

The Gaussian disaibution has shown up repeatedly in theoretical formul-
ations of rcflectarsee [Beckmann63][Torrancc67][Cook82], and it arises
fmm certain minimal assumptions about the statistics of a surface height
function. h is usually prceeded by a Frcsnel coefficient and geometrical
attenuation factors, and often by an arbitrary constant Since the
geometric attenuation factors are typical]y difficult to integrate and tend
to counteract the Fresnel factor anyway, we have replaced all of these
coefficients with a single normalization facmr that simply insures the
distribution will integrate easily and predictably over tie hemisphere.

WA. (a Jvi$L.fh)= : +

p,. 1 .exp[–tan2&’a2]
+05ei COSer 4rza2

(4)

where:
pd is the diffuse reflmarsce
p, is the specular reflectance

6 is the angle bciween veetors ri and ~ shown in Figure 5

a is the standard deviation (RMS) of the surface slope

notes

The p values may have some spectral dependence, and this depen-
dence may vary as a function of angle so long as pd + p, (the to-
tal reflectance) is less than 1. Thus, Fresnel effcets may be
modeled if desired.

1
The normalization factor, — is accurate as long as a is not

4rra2’
much greater than 0.2, when the surface becomes mostly diffuse.

The main difference between this isotropic Gaussian reflectance model
and that of Phong is its physical validity. For example, most Phong
implementations do not have the necessary bldire-dortal characteristics
to constitute a valid BRDF model. It is clear by inspection that the
above formula is symmetric with respect to its incident and reflected
angles. Without this symmetry, a BRDF model cannot possibly be phy-
sical because the simulated surface reflects light differently in one direc-
tion than the other, which is forbidden by natural law. Also, without
proper normalization, a reflectance model drxs not yield eorr-cctenergy
balance and thus eamror produce physically meaningful results. Even

Figure 5. Angles and vectors used in-rctleztion equations.
The incident light arriv~s along vector d; and is measured or
simulat~d in direction d,. The polar angle between the half
vector ~ and the surface normal ti is & Tlse azimuthal an-
gle of h fmm the direction f is @

the model inimduced recentty by He et al [Hc91] with its rigorous phy-
sical derivation dces not seem co pay close enough attention to normali-
zation. Specifically, the so-eallcd ambient tcmr in the He-Torrance
model is added without regard to the overall reflectance of the material,
which by nature of the model is very difticult to compute. Comparisons
were not made in He’s papa between the rcflcccarrcemedel and abso-
lute BRDF measurements (the data was scaled to match the function),
thus normalization was not even dcmcststmtedempirically. The fact that
normalization was not dequatcly treated in He’s othcnvise impeccable
derivation shows just how much normalization is overlooked and rmder-
vahred in reflectance modeling. The simplicity of the model preacartcd
here is what alfows us to incorporate buift-irr normahation and has
other desirable features as well, such as permitting quick evacuation for
data reduction and Monte Carlo sampling.

4.2. The Anisotropic (Elliptical) Gaussian Model

It is relatively simple to extend the Gaussian reflectance model to sur-
faces with two perpendicular (uneorrclared) slope distributions, Q sad
~. The normalized distribution is as foIlowx

Pd
PhI@i,$i;er A ) = ~ +

exp[-taazb (cos2@/a~+ sin2~r@]p,. 1 (5a)
dcosei case, 4rraXc+

where:

pd is the diffuse reflectance

p, is the specular rctlcctance

at is the standard deviation of the surface slope in the .f
direetion

c+ is the standard deviation of the surface slope in the ~
direction

5 is the mgle between the half vector, ~ and the surface
normal. r?.

@is the azimuth angle of the half vector pmjcctcd into the
surface plane.

A computationally convenient approximation for p~ is:

Pd
Pfd(ej ,Oi;er .Or) = ~ +

[[1[1]
2 2

ii + ~—
a= q

.—
““ 4+ 4nrL “p ‘2

(5b)
1 +ivf

where:

sine, cos$r + Sine(cos$~
i ..? =

Ilii’11
sine, sin$r + Sine/sim$,

k.y =
Ilii’11

Coser + Cose,
iv? =

Ilk’11

[ 1
IA

IIll I = 2 + 2sinersinOi(CO*,COS@i+ Sin$rsi@l) + 2COS8,cOS8i

For vector calculations, the following substitutions are used:

;=d, +ii

L&
IIhll

Coser = d,+
Cosei = (ii.ri

where:

J, is the reflected ray direction (away from surface)

~i is the incident ray direction (away from surface)

i is a unit veetor in the surface plane

~ is a unit vector in the surface plane perpendicular to f
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Figure 6. Measured data and elliptical Gaussian fit for unfinishedaluminum. Unfinished aluminum
exhibits anisotropy from rolling during its manufacture.

As in the isotropic case, the normalization of the above anisotropic
model is such that the total surface reflectance will equal the dMuse
reflectance coefficient, pd, plus the “rough specular” or “dkctiotral-
dit%se” coefficient, p,. The two other model parameters, ax and c$,
represent the standard deviation of the surface S1OPCin each of two per-
pendicular directions. Thus, all four of the model’s parameters have
physical meaning and can & set indepcrrdentlyof rttcaautd data to pro-
duce a valid rcflcctrutce function. As long as the total reflectance,
pd + p,, is less than I and the two a’s are not too large, Equation 5 will
yield a physically valid t-cflectasrcefunction.

Our simple four parameter model fits well the data we have gathered
from anisotropic surfaces such as varnished wood and unfinished (rolled)
or brushed metals. Bccatssc of its simplicity, it is easy to apply a last
squares error minimization trrcthod to fit a set of pammctcrs to measured
data automatically. Aumtrratic &ta fitting is essential to the ccmorrric
modeling of surface rcflcctarrcefor any significant database of trtarcrials.
Figure 6 shows art example fit to the BRDF of an unfinished aluminum
sample. Although USCfull hcrrsisphcrcof reflected data was tncsutu-d ss
21 incident angles, it is difficult to visualize the 21 corrcsporrdiig 3-
dimcnsiorral ooint rrlots. We therefore mesent here otdv a slice of the

The elliptical nature of our model arises from the two perpendicular data in the i~iden~ plane at 6 angtes. “1% results m:on (6) lists the

slop distributions, and is apparent in the cxpotrcnt of Equation 5a. A fitted parartretem for this materiat as well as some other example sur-

similar elliptical reflectance model was develo@ by Ohira and faces.

described by Yokoi and Toriwaki [Yokoi88], but this model was derived
from that of Phong and likewise lacks physical meaning. By starting
with a valid, normalised function, it is much easier to fit the model
pasarrretersto physicaJmeasurements as well as orher specifications such
as appearance.
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5. Rendering  Anisotropic  Surfaces

The challenge  to applying  a new reflectance  model to computer  graphics
is to approximate  the luminance  equation  (I)  in a manner  that  is
unbiased  and has low variance  [KajiyalB].  Unfortunately,  unbiased
techniques  (ie.  pure Monte  Carlo)  tend  to have  high  variance.  while low
variance  approaches  (ie.  closed-form  approximations)  tend  to be  biased.
To satisfy  these  conflicting  tequirements,  we  use  a hybrid  deterministic
and stochastic  my  tracing  technique  [Cook84][Cook86].  A strictly deter-
ministic  calculation  of the highlight  contribution  of sources,  similar  to
the widely used  Whitted  approximation  [WhittedSO],  fails to pick up
indirect semispecular  contributions  as demonstrated  in Figure  7a.  (Note
that  the crescent  shape  of the highlight  is due  to longitudinal  anisotropy
and not  the  light source.)  Conversely,  relying solely  on stochastic  sam-
pling causes the highlights  from  sources  to show high variance  in the
form of excessive  noise,  even  with  16 samples  per pixel (Figure  7b).
By combining  the two  techniques,  using  a deterministic  solution  for
source  contributions  and  a stochastic  sampling  for indirect  contributions,
we  get a clean  result  without  compromising  accuracy.  Figure 7c was
calculated  using  the hybrid  technique  and the same  number  of samples
as Figute  7b. Both  figures  took  approximately  the same  time to com-
pute.  (Figure  7a took less  time since  no sampling  was  required.)

The hybrid  approach  described  reduces  to the following  quation:

L ter *@r) = I $- + LJ PI + i Li Oj COSei  PM (9i .Oi ;Or 70,)
i=l

where:

(6)

I is the indirect  itradiance  at this  point  (a constant  ambient  level
or the result  of a diffuse  interreflection  or radiosity  calculation)

L, is the radiance  value  in the  Monte Carlo sample  direction  given
in Equation  7 below

L, is the radiance  of light  source  i

0, is the solid  angle  (in steradians)  of light soutce  i

N is the number  of light  sources

pm is the elliptical  Gaussian  function  defined  in Equation  5

In applying  this technique,  it is very  important  not to bias the sample  by
overcounting  the specular  component.  Bias is easily  avoided  by associ-
ating  a flag with the stochastically  sampled  specular  my. If the ray hits
a light source  whose  contribution  is being  included  in a closed  form cal-
culation,  then  the ray is not  counted.  Few rays are wasted  in this way,
since light  sources  occupy  a small  amount  of the visual  space  in most
scenes.

5.1. Stochastic  Sampling  of Elliptical  Gaussian

Because  of its  simplicity,  the elliptical  Gaussian  model  adapts  easily  to
stochastic  sampling techniques.  Using standard  Monte  Carlo  integral
conversion  methods  [Rubensteinll],  we  can  write the following  formulas
for obtainine  uniformlv  weighted  sample  directions  for each L, ray in
Equation  6:

1 ‘t4
(7s)

6 = tan-’ 5tan(2W  2)[ 1 0)

where:

6, 4 are the angles  shown  in Figure 5

II t, it2 are  uniform  random  variables  in the  range  (0.11

notes:

The tangent  and arctangent  in the Equation  7a should  be  computed
carefully  so as to keep  the angle  in  its  starting  quadrant.

Uniformly  weighted  sample  rays  sent  according  to the above  distribution
will correctly  reproduce  the specified  highlight.  This is much  more
efficient  than either  distributing  the samples  evenly  and then  weighting
the result,  or using  other  techniques,  such as rejection  sampling,  to
arrive at the correct  scattering.  Readers  familiar with Monte  Carlo  sam-
pling  techniques  will immediately  appreciate  the advantage  of having  a
formula  for the sample  point  locations  -- something  that is impossible
with more  complicated  reflectance  models  such as He-Torrance.

6. Results

Figure 8a shows  a photograph  of a child’s  varnished  wood  chair  with a
small  desk  lamp immediately  behind  and above  it. This arrangement
results  in  a large anisotmpic  highlight in the seat  of the chair.  Figure  8b
shows  the  closest  simulation  possible  using  a deterministic  isotropic
reflectance  model.  Figure 8c shows  a hybrid  simulation  with the ellipti-
cal Gaussian  model.  Notice  how the hybrid  rendering  technique  repro-
duces  not only the highlight  from the  light source,  but also the sem-
ispecular  reflection  from the back  wall in the seat  of the chair.

Figure  9 shows  a table  with anisotropic  reflections  in the wood  varnish
and the  two  candle  holders.  The lid of the silver box  shown  is also
anisotropic,  and demonstrates  the use  of local  control  to affect  the
reflectance  properties  of an  anisotropic  surface.  A wave  function  deter-
mines  the  orientation  of the brushed  direction  in the box  lid,  producing
characteristic  highlights.  There  are  four low level light  sources  in the
scene,  the two candles  on the  table,  an overhead  light source  above  and
to the right,  and the moon  shining  in through  a window.

Figure  74 7b,  7c. Alternative  rendering  techniques  for  anisotropic  reflection.  7a on the left shows
deterministic  technique  with no sampling.  7b center  shows  strict  Monte  Carlo sampling  approach.
7c on the right  shows  hybrid deterministic  and stochastic  method.
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Figure Sa, Sb, SC. Varnished wood comparison. 8a on the left shows a photograph of a child’s 
chair. 8b center shows a simulation of the chair using the isotropic Gaussian model given in Section 
4.1 with a strictly deterministic calculation. (This is similar to the appearance one might obtain 
using a normalized Phong reflectance model.) 8c on the right shows a hybrid deterministic and sto- 
chastic simulation of the chair using the al Gaussian model from Section 4.2. 

Figure 9. A table scene with amsotropic reflectton in metallic and vamtshed wood surfaces. 
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The folJowing tsbfe gives a short list of msrkes and their eUipficat
Gausaian fits. Cofoewas nat measured for anyoftheaur&ea. The
mataiaf sintheseamdh alfofthetsble arekohofsi c.sothetwoa
vafuea are the .samQ turdEquation (4) am be used.

Mataial
rotted brass
mued aluminum
lightJy brushed shttttinum
varnished plywood
enamel tisrished metaJ

b
“nted cardboard box

white ceramic tie
glossy gst?ypaper
ivmy computes plastic
pJastic laminate

.1 .21 .04 .09

.15 .19 .088 .13

.33 .025 .04 .11

.25 .047 .080 .096

.19 .043 .076 .085

.70 .050 .071 .071

.29 .083 .082 .082

.45 .043 .13 .13

.67 .070 .092 .092

We have aks measured the reflectance functions of various trairstedsrsr-
faces. We found the “flat” Latex paint w tested to be ‘%ry nearfy
diffuse, at least for incii angles up to 6W. l%ereforq we prcaent
only the restdts from our mcasumanems of “scsni-gltxs” and “gloss”
Latex. Otm pi was atwsstd 0.45 ftw both the semi-gloss and the gloss
paints. Tlse vrsbrefw p, of h sesni-gloss Iatex was around 0.048 for
SU surfaces, and the gloss Latex had a slightly higher am-age of 0.059.
Although pi changes dramatically with the color of painL the vafue for
P. rcmaina fhirlycatatant sisrceit is determined bytlseindex ofrefrac-
tionofthe pairrt base. lltevattre sfew~an d~areafs ormsffectedby
paint color, but since they @tend on Useexact microstructure of the
painted surface, they vaty with tfw apptiion medrod and the rmdesly-
ing matea@ as shows in the fottowing two tables.

(%,%) for Latex Senli-Gloss, p,=o.048
Itcd SP Yed

metal I (.037,.064) (.0% .068) (.04: .055)
I sheetsock I (.078. .12) (.083. .12) (.096. .11) I

wood I @97j .24j ~.12$:2q’ i.ti .26j I

(c%,%) for Latex Gloss, P. =0.059
d’ Ued SP Yed

metsf I (.037. .063) [.0:. .080) (.03: .054)
shhsk (.10, :10) - (.12, :12) . {.10, :10) -

(.13, .22) (.13, .20) (.12, .17)

7. Conclusion

We have preaestti an economical new device for measuring BRDFs,
and a simple reflec~ mcscklthat fits a large class of matesials. The
imaging gonioretlectometer presented here is a waking prototype, but
improvesnenta are newasmy for fhem eammsttemt of grstsing angles and
smoothes matesials. L*wise, the eflipficalGaussianmodetpresentedis
fast and xscurate for rttasty surbxs, but there are stiU many materials
that do not fit our timcdon. Its conclusion, sdffrougbtJre inidat efforts
am promising, w hope that this work wifl stimtdate fusltser investigation
of empirical absding models. Aftcs aU, good science requites both
theory and data -- one is of littJe use without the other.
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Abstract

We describe a physically-based Monte Carlo technique for ap-
proximating bidirectional reflectance distribution functions
(BRDFs) for a large class of geometries by directly simulating
optical scattering. The technique is more general than pre-
vious analytical models: it removes most restrictions on sur-
face microgeometry. Three main points are described: a new
representation of the BRDF, a Monte Carlo technique to esti-
mate the coefficients of the representation, and the means of
creating a milliscale BRDF from microscale scattering events.
These allow the prediction of scattering from essentially ar-
bitrary roughness geometries. The BRDF is concisely repre-
sented by a matrix of spherical harmonic coefficients; the ma-
trix is directly estimated from a geometric optics simulation,
enforcing exact reciprocity. The method applies to rough-
ness scales that are large with respect to the wavelength of
light and small with respect to the spatial density at which
the BRDF is sampled across the surface; examples include
brushed metal and textiles. The method is validated by com-
paring with an existing scattering model and sample images
are generated with a physically-based global illumination al-
gorithm.

CR Categories and Subject Descriptors: I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism.
Additional Key Words: spherical harmonics, Monte Carlo,
anisotropic reflection, BRDF

1 Introduction

Since the earliest days of computer graphics, experimenters
have recognized that the realism of an image is limited by
the sophistication of the model of local light scattering [3, 12].
Non-physically-based local lighting models, such as that of
Phong [12], although computationally simple, exclude many
important physical effects and lack the energy consistency
needed for global illumination calculations. Physically-based
models [2, 5, 15] reproduce many effects better, but cannot
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Figure 1: Applicability of Techniques

model many surfaces, such as those with anisotropic rough-
ness. Models that deal with anisotropic surfaces [8, 11] fail to
assure physical consistency.

This paper presents a new method of creating local scat-
tering models. The method has three main components: a
concise, general representation of the BRDF, a technique to
estimate the coefficients of the representation, and a means
of using scattering at one scale to create a BRDF for a larger
scale. The representation used makes it easy to enforce the ba-
sic physical property of scattering reciprocity, and its approx-
imation does not require discretizing scattering directions as
in the work of Kajiya [8] and Cabral et al. [1].

The method can predict scattering from any geometry that
can be ray-traced: polygons, spheres, parametric patches,
and even volume densities. Previous numerical techniques
were limited to height fields, and analytical methods have
been developed only for specific classes of surface geome-
try. The new method accurately models both isotropic and
anisotropic surfaces such as brushed metals, velvet, and wo-
ven textiles.

Figure 1 shows several representations used in realistic ren-
dering, along with approximate scale ranges where each is
applicable. At the smallest scale (size � 1 mm), which we call
microscale, the BRDF accurately captures the appearance of a
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surface. As individual surface features become larger than
one pixel, texture maps, bump maps, and texels can be used
to show surface features. At the largest scale, object scale, the
geometry must be modeled explicitly, for example with poly-
gons or parametric patches.

The applicability of each representation ultimately de-
pends on the context: the upper limit of applicable scale is
determined by the frequency of sampling across a surface,
and the lower limit is determined by the integration area for
each sample; this is often the surface area represented by a
pixel. When rendering, say, an interior scene, objects as small
as a pencil must be modeled at object scale; when simulat-
ing the view from orbit, however, objects as large as trees
and buildings can be modeled within the BRDF, so we can
think of them as microscale geometry, or microgeometry. The
advent of global illumination methods (e.g. [6, 18]) has cre-
ated another concept of scale: these methods generally use
a coarser characterization of scattering for indirect illumina-
tion, but demand careful attention to energy consistency and
physical accuracy.

The method of this paper is applicable wherever the BRDF
is an adequate model of surface geometry. It uses an analyt-
ical BRDF model for scattering at one scale of roughness, the
microscale, simulating geometric optical scattering at a larger
scale, the milliscale. Milliscale scattering embodies large-scale
roughness effects (roughness size � wavelength of light, � ),
and any smooth surface effects (roughness size � � or � � )
are modeled by the microscale BRDF, which can include wave
optics effects.

The next three sections present the heart of the technique:
the BRDF representation, the Monte Carlo estimator, and the
means of estimating a milliscale BRDF from the microscale
description of surface roughness.

2 WheelsWithinWheels: Representing the
BRDF with Spherical Harmonics

A general scattering function for unpolarized light is a func-
tion of four variables, � bd( � i 	 
 i 	 � r 	 
 r) : S2 � S2 � � , where S2

is the unit sphere, � i 	 
 i are the elevation and azimuth angles
of incidence, and � r 	 
 r are the corresponding angles of reflec-
tion (Figure 2). For a BRDF, � bd is zero whenever � i or � r � �2 .
The BRDF can take on highly arbitrary shapes [5, 16], so a very
general method is needed to represent it. Fortunately, a BRDF

θi θr

φi

φr

x

z

ydω 
i

Figure 2: Scattering Angles

is generally smooth, making it a good candidate for repre-
sentation by smooth orthogonal functions. Previous authors
have used spherical harmonics to represent scattering func-
tions [1, 9, 13], since they form a complete basis set of smooth
functions over the sphere. Kajiya [9] used spherical harmon-
ics to derive an analytical scattering function; Cabral et al. [1]
and Sillion et al. [13] used them as a numerical approximation
to the BRDF. The representation used in this paper is an ex-
tension of Sillion’s technique; it provides an accurate, concise
embodiment of the general BRDF.

2.1 Overview of Spherical Harmonics

Any square-integrable function over the sphere can be exactly
represented by an infinite sum of spherical harmonic basis
functions, Ylm( � 	 
 ), of varying order, l, and degree, m:

f ( � 	 
 ) =

��

l=0

l�

m= � l

ClmYlm( � 	 
 ) � (1)

As with a Fourier representation, we can approximate f by
truncating the series to a finite number of terms. For con-
venience, we organize this finite collection of basis functions
into a vector by the convention of encoding both order and
degree with a single subscript. Thus

f ( � 	 
 ) �
n�

k=0

CkYk( � 	 
 ) = � � � ( � 	 
 ) � (2)

Each coefficient Ck is defined by the inner product of f ( � 	 
 )
with the corresponding spherical harmonic basis function:

Ck = �
2 �

0

� �
0

f ( � 	 
 )Yk( � 	 
 ) sin � d � d 


=  Yk ! f " � (3)

This follows directly from the orthogonality of the basis func-
tions [17].

2.2 Representing the BRDF

If we fix the incident direction ( � i 	 
 i), the BRDF is a func-
tion of two variables, ( � r 	 
 r), and the representation in Equa-
tion 2 suffices. To account for variation of the BRDF with in-
cident direction, the coefficient vector � in Equation 2 can be
thought of as a function of the incident direction. If a sur-
face has isotropic roughness, as assumed in [1] and [13], the
scattering function � bd is independent of rotation about the
surface normal. In this case,

� bd( � i 	 
 i 	 � r 	 
 r) = � bd( � i 	 0 	 � r 	 
 r $ 
 i) � (4)

Each coefficient Ck is a function of � i alone, which can be cal-
culated for a number of selected values of � i and interpolated
for all � i [1, 13]. In general, however, a BRDF is a function of


 i as well as of ( � i 	 � r 	 
 r), so a richer representation is needed.

2.3 Extension to Anisotropic Surfaces

For an anisotropic surface both � i and 
 i must be considered,
and none of the previous representations suffices [1, 13]. Each
coefficient Ck in Equation 2 is thus a function of � i and 
 i:



Nomenclature

Ck Spherical harmonics coefficient for basis function Yk
� Vector of coefficients
Ei Incident energy flux density (irradiance)
Er Reflected energy flux density
Gk Estimator of Ck
Ii Incident radiance
Ir Reflected radiance%

Exact matrix of coefficients to represent � bd& %
Monte Carlo approximation of

%

mjk Element at row j, column k of matrix
%

Nb Number of exit rays resulting from one incident ray
Ni Number of incident ray directions
Np Number of sample points on surface of specimen

p( � i 	 
 i 	 � r 	 
 r) Probability density function of scattering from ( � i 	 
 i) to ( � r 	 
 r)
R( � i 	 
 i 	 � r 	 
 r) Attenuation of a single ray incident from ( � i 	 
 i) and reflected to ( � r 	 
 r)

Yk( � 	 
 ) Spherical harmonics basis function
� Vector of basis functions

� Elevation angle: � = 0 at surface normal

 Azimuth angle: 
 = 0 at x axis

� bd( � i 	 
 i 	 � r 	 
 r) Milliscale bidirectional reflectance distribution function (BRDF)'
� bd( � i 	 
 i 	 � r 	 
 r) Microscale bidirectional reflectance distribution function (BRDF)'

� s( � i 	 
 i) Microscale specular reflectivity
d ( i Differential solid angle of incident energy
d ( r Differential solid angle of reflected energy

 a ! b " Inner product of two functions: ) a(t)b(t)dt
 * " Expected value of random variable *

� bd( � i 	 
 i 	 � r 	 
 r) �
n�

k=0

Ck( � i 	 
 i)Yk( � r 	 
 r) � (5)

Each coefficient function, Ck( � i 	 
 i), is defined by the inner
product of � bd( � i 	 
 i 	 � 	 � ) with the corresponding spherical har-
monic basis function:

Ck( � i 	 
 i) =  � bd ! Yk " refl (6)

where the subscript “refl ” denotes integration over the re-
flected hemisphere. Reciprocity makes the dependence of � bd
on ( � i 	 
 i) exactly like its dependence on ( � r 	 
 r). Since spher-
ical harmonics concisely represent the latter dependence, we
also use them to represent the dependence on ( � i 	 
 i), express-
ing each coefficient function in terms of spherical harmonics.
Each element of our vector � of coefficients is now repre-
sented in turn by a vector of coefficients, giving us a matrix

%

to represent the BRDF. Each element of the matrix
%

is given
by

mjk = . Yj !  � bd ! Yk " refl / in
(7)

where the subscripts “in” and “refl ” denote integration over
the incident and reflected hemispheres, respectively. Evalua-
tion of the BRDF becomes

� bd( � i 	 
 i 	 � r 	 
 r) �
N�

j=0

N�

k=0

Yj( � i 	 
 i)mjkYk( � r 	 
 r)

= � T( � i 	 
 i)
%

� ( � r 	 
 r) 	 (8)

where � ( � 	 
 ) is the column vector of basis functions evalu-
ated at ( � 	 
 ).

2.4 Reciprocity

An important physical constraint on the BRDF is reciprocity,
which states that

� bd( � i 	 
 i 	 � r 	 
 r) = � bd( � r 	 
 r 	 � i 	 
 i) (9)

for all angles of incidence and reflection [14]. If the matrixM
is symmetric, then

� T( � i 	 
 i)
%

� ( � r 	 
 r) = � T( � r 	 
 r)
%

� ( � i 	 
 i) (10)

and the approximation in Equation 8 satisfies Equation 9. By
assuring that we compute a symmetric matrixM, we can en-
force exact reciprocity; previous approaches [1, 8, 11, 13] af-
forded, at best, approximate reciprocity.

2.5 Storage Reduction and Filtering

The matrix M can be quite large; tens of thousands of ele-
ments are typical. Since our BRDF representation, like that of
[13], is based on spherical harmonics, we can adapt two tech-
niques from that work to reduce the number of coefficients



(and corresponding basis functions) needed: the first tech-
nique causes half the coefficients to vanish, and the second
reduces the high-frequency content of the BRDF, reducing the
number of coefficients needed to achieve an acceptably accu-
rate approximation. Since we deal only with scattering to one
hemisphere, we can complete the other hemisphere with an
arbitrary function. We chose a function that reduces the size
of the representation: � bd( � i 	 
 i 	 0 $ � r 	 
 r) = $ � bd( � i 	 
 i 	 � r 	 
 r);
this causes half of the coefficients (those with l + m even in
the real form of spherical harmonics) to be zero; they can be
omitted from the representation, reducing the matrix size by
3
4 . To economize further, we represent � bd cos � i cos � r instead
of � bd; multiplication by cos � i, together with the completion
described above, forces C1 continuity at the equator and dras-
tically reduces ringing. To maintain symmetry of the matrix
M, we also multiply by cos � r. Representing � bd cos � i cos � r
assures that Equation 9 is still satisfied. We omit this imple-
mentation detail from the following discussion.

As with a Fourier representation of a function, simply trun-
cating all coefficients with index l � lmax will cause ringing
in the approximation, called the Gibbs phenomenon. To re-
duce this, we attenuate higher frequencies, as did Cabral et
al. [1], by progressively reducing the magnitude of coeffi-
cients with lfilter � l 1 lmax, where lfilter is an empirically-
determined threshold. The magnitude is reduced according
to a half-Gaussian with empirically-determined width.

3 Monte Carlo Estimation of the
Coefficient Matrix

If we bombard a specimen with incident rays from an arbi-
trary direction U = ( � i 	 
 i), the BRDF can be expressed as

� bd(U 	 V) =
p(U 	 V)  R(U 	 V) "

cos � r
(11)

where a ray from direction U will scatter into V = ( � r 	 
 r) with
a probability density p(U 	 V), and  R(U 	 V) " is the mean atten-
uation of all rays incident from direction U and scattered in
direction V.

In order to obtain a spherical harmonics coefficient, we
must integrate the product � bdYk over the hemisphere.

Ck(U) = �
S2

� bd(U 	 V)Yk(V)dV

= �
S2

 gk(U 	 V) " p(U 	 V)dV (12)

where
gk(U 	 V) =

R(U 	 V)
cos � r

Yk(V) � (13)

Unfortunately we have no analytical expression for p or R;
we can, however, use a Monte Carlo simulation to estimate
the integral in Equation 12. The integral can be interpreted as
the expected value of gk(U 	 V), where V is a random variable
with probability density function p(U 	 V). If we define

Gk(U) =
1
N

N�

n=1

gk(U 	 Vn) (14)

where Vn are random samples distributed according to p, then
the expected value of Gk is Ck(U); Gk is said to be an estimator

of the integral [10]. The rays departing from the specimen in
direction V will have mean attenuation  R(U 	 V) " ; this attenu-
ation must be multiplied by Yk(V) 2 cos � r to give the expected
value g for the estimator.

This leaves another integration, that with respect to U:

mjk = �
S2

Ck(U)Yj(U)dU � (15)

This integration can also be handled via Monte Carlo, this
time as quadrature, a discrete approximation to an integral.
This is handled similarly, with the estimator

3
mjk =

1
N

N�

n=1

Cj(Un)Yj(Un) (16)

where the Un are uniformly distributed over the incident
hemisphere. These two sampling processes, each approxi-
mating an integral in two dimensions, can be combined into
one process to approximate the four-dimensional integral de-
sired.

3
mjk =

1
N

N�

n=1

gk(Un 	 Vn)Yj(Un) (17)

where the Un are distributed uniformly and the Vn are dis-
tributed according to p.

3
mjk is an unbiased estimator of mjk.

The simulation yields
& %

, an approximation to the sym-
metric matrix M, and does not guarantee symmetry, so reci-
procity of the BRDF is not guaranteed. We average the upper
triangle and the lower triangle of

& %
to obtain a symmetric

matrix 1
2 (

& %
+

& % T) which is used to compute � bd. The two tri-
angles are independent unbiased estimates of the BRDF; by
averaging them to obtain a symmetric matrix, we also reduce
the variance of our estimate of

%
.

4 FromMicroscale to Milliscale

The BRDF can be used to model features ranging from mi-
croscale to milliscale for visible light, as shown in Figure 1.
This section explains how to use microscale scattering events
to calculate a milliscale BRDF. The section starts with basic
BRDF definitions, describes the individual microscale scatter-
ing events, then explains how individual Monte Carlo events
are incorporated into the milliscale model to obtain an aggre-
gate BRDF.

At the microscale, arbitrary reflection models may be em-
ployed, including ideal specular, ideal diffuse, and direc-
tional diffuse models. One illustrative case is where the mi-
crogeometry is composed of planar ideal specular surfaces;
this is equivalent to geometric optics models based on micro-
facets, such as the Torrance-Sparrow model [15].

We use ray tracing to model scattering events, as suggested
by Cabral et al. [1]. The ray tracer must be carefully designed
to assure physically accurate results. Each ray has a certain
amount of energy associated with it; microscale reflection will
attenuate this energy and perhaps divide it among multiple
rays at each bounce. All calculations involve energy flux den-
sity until a ray finally exits the model; then the energy is con-
verted to radiance, the proper quantity for the BRDF, by di-
viding by cos � r. The radiance distribution is averaged over
the specimen surface to create a milliscale BRDF.
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4.1 Incident Energy and the BRDF

We are estimating the BRDF � bd, which is expressed at a given
wavelength as

� bd( � r 	 
 r 	 � i 	 
 i) =
dIr( � r 	 
 r)
dEi( � i 	 
 i)

(18)

where dIr is the reflected radiance and dEi is the incident en-
ergy flux density, the incident energy per unit time per unit
area. This equation holds at both micro- and milliscales. It
becomes simpler to evaluate if we hold the denominator (in-
cident energy flux density) constant and vary the incident an-
gles � i 	 
 i. Then

� bd( � r 	 
 r 	 � i 	 
 i) =
dIr( � r 	 
 r)

dEi
(19)

where dEi is the (constant) incident energy flux density.
Incident radiance Ii is defined as the incident energy flux

density per unit projected area per unit solid angle

Ii =
dEi

cos � id ( i
� (20)

Thus
dEi( � i 	 
 i) = Ii( � i 	 
 i) cos � id ( i � (21)

The factor cos � i converts receiving area to projected area, ac-
counting for the dependence of projected surface area on � i.

The method allows different local scattering modes, three
of which are shown in Figure 3. The next three sections de-
scribe how these modes are modeled.

4.2 Specular Reflection

The BRDF at the microscale may contain an ideal specular
component

'
� s. Whenever a ray hits such a microfacet, we

model the transfer by spawning a ray in the specular direc-
tion as in classical ray-tracing [19]. The energy flux density of
this ray is determined by the equation

dEr =
'

� s( � i)dEi (22)

where dEi is the flux density of the incident ray, � i is the in-
cident elevation with respect to the local facet, and

'
� s is the

microscale specular reflection coefficient for the facet.

4.3 Specular Transmission

The method may be used to model microgeometries that in-
clude transparent materials. Whenever a ray encounters a

smooth interface between media of different refractive in-
dices, we must calculate the energy transfer through the in-
terface. Neither energy flux density nor radiance is preserved
at the interface [4], since solid angles are altered, but the dis-
tribution of transmitted rays accounts for this. We also must
model any attenuation of the ray as it passes through a trans-
parent medium; for a uniform medium, the ray is attenuated
by e � 4 s where s is the path distance and 6 is an extinction co-
efficient determined by the material.

4.4 Directional-Diffuse Reflection

The most complex transfer takes place when a ray strikes a
facet that shows directional-diffuse scattering. When a ray
hits such a facet, we send out n rays to the hemisphere above
the facet and weight them according to

'
� bd; this serves as a

discrete approximation of scattering according to the ideal-
diffuse and directional-diffuse parts of the BRDF. The total
energy transfer is determined by

dEr( � r 	 
 r) = dIr d ( r cos � r

= dEi
'

� bd( � i 	 
 i 	 � r 	 
 r) d ( r cos � r (23)

where dEr is the reflected energy flux density in a particular
direction,

'
� bd is the diffuse part (including directional-diffuse)

of the microscale BRDF, and d ( r is the solid angle of reflection.
The angles ( � r 	 
 r) give the reflection direction with respect to
the local facet. We multiply by d ( r cos � r to convert the radi-
ance given by

'
� bd to energy flux density for the next scattering

event.
In our implementation reflected rays are cast randomly

into the hemisphere above the local (microscale) surface; they
are distributed uniformly over this hemisphere, so each ray
represents a solid angle of

d ( r =
2 0
n

(24)

where 2 0 is the total solid angle of the hemisphere and n is
the number of reflected rays shot.

4.5 Integrating Over Milligeometry

We have described the possible microscale events of a single
ray striking a point on the surface, but we must integrate over
the specimen to obtain the aggregate BRDF. Just as the Monte
Carlo integration was extended in Section 3 to accomodate
the two dimensions of the incident hemisphere, it can be ex-
tended further to integrate over a two-dimensional specimen
surface. We can keep the incident energy flux density con-
stant by keeping both the total incident flux and the receiv-
ing surface area constant. We do this by shooting a constant
number of rays (energy flux) and by distributing them over
a constant surface area. The simplest way to do this is to se-
lect a fixed region of the surface, as shown in Figure 4, and
to distribute the samples uniformly over this region at each
incident angle. The direction of each ray is determined by the
incident angles ( � i 	 
 i) with respect to the mean surface; its ori-
gin will be calculated so that the ray will strike the notional
plane of the surface, shown in Figure 4 in red, at the chosen
sample point.



Figure 4: Target Area

The surface region chosen should be7 large with respect to the lateral geometric features of the
surface, to assure a good statistical average of large-scale
scattering;7 large with respect to the vertical thickness of the surface
geometry; and7 a subset of the total surface geometry, since geometry
outside the nominal surface region will be important at
high incident angles.

When a ray leaves the specimen area, we update the ap-
proximate matrix

& %
by adding � (U) � T (V)R 2 cos � r. This

matrix represents the BRDF � bd. We integrate over the por-
tion of the surface that is visible from the reflection direction
( 
 r 	 � r), projected onto the mean surface.

4.6 Efficiency Considerations

We can reduce the computation needed to maintain the ma-
trix

& %
by holding the incident direction U constant for several

reflected directions V, updating the matrix only once for each
distinct U. This happens automatically when several ran-
domly distributed rays are spawned at each intersection, as
in directional-diffuse scattering. In addition, we choose sev-
eral target points on the surface for each U, further amortiz-
ing the cost of updating the matrix. Updating the matrix then
becomes a triple sum& %

=
1

NiNpNb

Ni�
n=1

� (Un) 89 : Np�
m=1

Nb�
l=1

� T(Vml)
Rnml

cos � r ; <= (25)

where Rnml is the attenuation of a ray from incident direction
Un reflected in direction Vl from target point Pm on the sur-
face. Ni is the number of incident directions used, Np is the
number of sample positions across the specimen for each in-
cident direction, and Nb is the number of exit rays resulting
from a single incident ray. This approach reduces the number
of evaluations of the spherical harmonics basis functions; for
NiNpNb samples to update the matrix, � (U) is evaluated only
Ni times, while � T(V) is evaluated NiNpNb times. The great-
est savings, however, comes in matrix adds; we need only
perform Ni matrix additions; the other updates simply add
vectors and require far less computation.

4.7 Convergence Measure

Since the exact matrix
%

is symmetric, we can use the asym-
metry of our estimate as a measure of convergence in approx-
imating the true BRDF. We calculate the error Q as

Q = >>> & % $ & % T >>> (26)

where ? @ ?
=

1
N2

J�
j=1

J�
k=1 BB

@
ij BB (27)

where J is the size of the matrix

@
. This is perhaps not as

informative as a direct estimate of the variance of each coef-
ficient, but is much cheaper to compute and tends to decline
as 1C

N
, which suggests that it is directly proportional to the

variance.

5 Results

We now show several applications of the technique. We ob-
tain BRDF’s for surfaces textured at milliscale. At the mi-
croscale, the BRDF can be ideal specular, ideal diffuse, or an
analytical BRDF that includes wave optics effects. The tech-
nique can also be used recursively by using the results of one
simulation as the microscale BRDF in another simulation.

All images shown in this section were generated by Monte
Carlo ray tracing; the grainy texture of the images is caused by
the Monte Carlo integration used to compute global illumi-
nation. Other global illumination and rendering techniques
might have been used, such as that of Sillion et al. [13].

We first consider a flat Gaussian-rough surface for which,
at the microscale, the surface is an ideal specular reflector. We
can compare the results of the new method with the results of
an existing analytical model for such a surface [5], thus giving
some verification of the new technique.

5.1 Initial Verification: An Isotropic Surface

Wave optics effects were not included, except for the Fresnel
coefficient for each microfacet. Reflection is governed by ge-
ometric optics; shadowing and masking effects of the surface
are included because of the occlusion calculations in the ray
tracer.

Gaussian height fields were generated by FFT filtering of
white noise, and the resulting points were connected by tri-
angles, each of which was modeled as a mirror. To integrate
over a specimen large compared to the roughness height, an
area of 8 � 8 millimeters was used. To assure adequate repre-
sentation of the surface, a total of 524,288 polygons was used.
The model was created in four sections of 131,072 polygons,
each generated with a different random number seed, to rep-
resent a square patch of surface 4mm wide. The roughness
length parameters of the surface were D = 10 E m vertically
and F = 65 E m horizontally (Figure 5). The specimen patch
actually used was 3.13mm wide in the center of the geomet-
ric model; this assured that all incident rays would intersect
the “sides” of the patch at least 2 D away from the notional
plane.

Incident ray angles were restricted to 88 G to keep the effec-
tive roughness greater than 460 nm, the shortest wavelength
employed. This keeps behavior in the regime where geomet-
ric optics is valid; were the wavelength to approach the size



4mm

Figure 5: Gaussian Surface

of surface features, wave-related effects would begin to affect
the scattering. Results are plotted as solid lines in Figure 6
for incident angles � i = 0 G 	 30 G 	 45 G 	 60 G 	 75 G . Dashed lines
show results from the model of He [5], which assumes a Gaus-
sian rough surface and allows for wave optics effects. The He
model is shown in the limit of large surface roughness, D � � ,
where wave optics effects should be negligible. The simula-
tion agrees quite well with the analytical model for reflection
angles less than about 80 G ; the divergence at greater angles
is disturbing, but not very significant in terms of energy val-
ues. Recall that the BRDF � bd gives a radiance value dIr; the
energy dEr scattered in any reflected direction ( � r 	 
 r) is pro-
portional to dIr cos � r, reducing the effect of the error at high
angles of reflection. We believe that the error results because
we approximate � bd cos � r. If we assume that error in approxi-
mating this function is roughly constant over the hemisphere,
dividing by cos � r to recover � bd will magnify the error near
the horizon (i.e. as � r

� �2 ).

5.2 Simple Anisotropy

We can use the method to create an anisotropic millis-
cale BRDF by using an isotropic analytical microscale BRDF
model; we rely on He’s analytical model for microgeomet-
ric effects, and use the new technique to model larger-scale
anisotropy. Figure 7 shows, at the top, a model of parallel
cylinders of slightly rough aluminum. In the left side of the
figure, the cylinders are oriented with axes perpendicular to
the screen; in the right side the axes are parallel to the screen.
The bottom half of the figure shows a similar scene, but with
two flat plates replacing the arrays of cylinders. Both plates
use a BRDF generated from parallel cylinders like those in the
top half of the figure. In the left half of the figure, the axis of
anisotropy was oriented perpendicular to the screen; in the
right half, it is oriented left-right.

The scattering patterns are similar; when viewed from a
distance, the images look the same. The microscale BRDF
is important for generating the upper images; the milliscale
BRDF is used for the lower figures. Note how the surface
orientation affects the appearance, revealing the anisotropic
behavior of the reflected light. This is further illustrated in
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Figure 6: Comparison with Previous Model

Figure 8, where the same object is rendered with two BRDFs
for brushed aluminum, one isotropic and one anisotropic.

Figures 9 and 10 show an aluminum automotive wheel and
an aluminum teapot created using this anisotropic BRDF. The
polishing scratches were oriented as from rotation, about the
vertical axis of the teapot and about the hub of the wheel. The
energy-consistency of the BRDF, not guaranteed by previous
approaches, allows an accurate global illumination solution.

Figure 7: Parallel Cylinder Model of Anisotropic Surface

Figure 8: Isotropic and Anisotropic Aluminum



Figure 10: Anisotropic Aluminum Teapot

Target Area

Figure 11: Microscale Geometry for Velvet

5.3 Velvet

A more complex microgeometry is that of velvet: it consists of
many roughly parallel specular fibers extending from a fabric
base. This was modeled as a forest of narrow cylinders, with
the angle of each cylinder perturbed randomly (Figure 11).
The target area for incident rays is shown at the top of the
fibers. The fibers are shown as ideal diffuse for clarity; in the
BRDF simulation, the fibers were transparent ideal-specular
plastic. Whenever a ray intersected a fiber, it was either re-
flected (with probability equal to the Fresnel reflectivity) or
transmitted; when it intersected the base plane, it was ab-
sorbed. Figure 12 shows an image made using the resulting
BRDF.

5.4 Woven Cloth

The method can also be used recursively to model sev-
eral scales of roughness; this is demonstrated by modelling
woven cloth as shown in Figure 1. At the milliscale, the

Figure 12: Velvet Doughnut

Figure 13: Microscale Structure of Cloth Model

Figure 14: Cloth Microscale Geometry and Real Cloth



Figure 9: Anisotropic Aluminum Wheel

Figure 15: Nylon Cushion



weave pattern of the cloth was modeled as shown in Fig-
ure 13, and an anisotropic BRDF was used to model the scat-
tering from individual fibers in the threads. The scattering
from the surface of each thread (microgeometry) was mod-
eled by the same geometry used in Section 5.2, but using a
Fresnel reflectance function to simulate black synthetic fibers.
Figure 14 has three parts: on the left, the cloth microgeometry
is shown with an ideal-diffuse BRDF; in the center, it is shown
with the thread BRDF, and on the right is a magnified photo-
graph of actual cloth. Figure 15 shows a cushion upholstered
in black nylon, rendered using the BRDF obtained from this
process.

6 Conclusion

Three main points are described in this paper: a new repre-
sentation of the BRDF, a Monte Carlo technique to estimate
the coefficients of the representation, and the means of cre-
ating a milliscale BRDF from microscale scattering events.
These allow the prediction of scattering for essentially arbi-
trary geometries. BRDFs for complex surfaces can be simu-
lated hierarchically by using the result of one simulation in
generating the BRDF for the next larger scale.

The new representation is concise and well-suited for use
in rendering and global illumination calculations. The tech-
nique of [13] can be easily extended to accommodate the new
representation. Its ease of evaluation suits it for other global
illumination methods such as stochastic ray tracing [7, 18] as
well.

The Monte Carlo integration used here enables us to model
the scattering of many surfaces which have hitherto been im-
possible to model in computer graphics, producing accurate
models for anisotropic surfaces and surfaces with transparent
elements.
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Non-Linear Approximation of Reflectance Functions

Eric P. F. Lafortune Sing-Choong Foo∗ Kenneth E. Torrance Donald P. Greenberg
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Abstract

We introduce a new class of primitive functions with non-linear pa-
rameters for representing light reflectance functions. The functions
are reciprocal, energy-conserving and expressive. They can capture
important phenomena such as off-specular reflection, increasing re-
flectance and retro-reflection. We demonstrate this by fitting sums
of primitive functions to a physically-based model and to actual
measurements. The resulting representation is simple, compact and
uniform. It can be applied efficiently in analytical and Monte Carlo
computations.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism; I.3.3 [Computer Graphics]: Picture/Image
Generation

Keywords: Reflectance function, BRDF representation

1 INTRODUCTION

The bidirectional reflectance distribution function (BRDF) of a ma-
terial describes how light is scattered at its surface. It determines
the appearance of objects in a scene, through direct illumination
and global interreflection effects. Local reflectancemodelsthere-
fore play an essential role in local and global illumination simula-
tions.

The diagram of Figure 1 illustrates the importance of a proper
representation of reflectance data. The data originate from phys-
ical measurements, from scattering simulations on surfaces, from
physically-based reflectance models, or from a set of empirical pa-
rameters input by the user. The representation should capture the
necessary information in a way that allows it to be used in global il-
lumination algorithms. Several factors contribute to the quality and
usefulness of a representation:accuracy, physical correctnessand
computational efficiency.

First of all, the original data should be represented accurately
enough to obtain physically faithful results. However, in practice,
precise measurements are often not available. As a very precise
representation cannot improve imprecise data, a simpler model that
naturally interpolates the data may be preferable. It can also be
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useful to have a model with a limited set of parameters that are
intuitive to use. Such parameters provide an easy way to control or
to monitor the behavior of the model.

Secondly, the representation should be physically plausi-
ble. Reflectance functions are positive, reciprocal and energy-
conserving [12]. Preferably, their representations should satisfy
these constraints as well, because global illumination algorithms
may rely on it.

Thirdly, for actual application in global illumination computa-
tions, the ideal model should be computationally efficient. It is usu-
ally an element in the larger context of an illumination simulation
algorithm. One thus looks for a proper balance between accuracy,
memory use and computation times of the various components. In
the context of physically-based rendering, it makes little sense to
use an overly precise and computationally expensive or memory-
hungry model, when small subtleties are overwhelmed by global
illumination effects, or when the simulation is relatively inaccurate.

At present, many reflectance models are not physically plausi-
ble. More precise physical models are often computationally ex-
pensive and geared toward specific types of surfaces. The most ex-
pressive models, such as spherical harmonics or wavelet represen-
tations, may require significant memory to obtain acceptable repre-
sentations of even the simplest BRDFs. Yet we want to efficiently
represent the relatively complex reflectance of common surfaces
such as the wooden table shown in Figure 2. The pictures illustrate
the varying specular and diffuse reflectance for different viewing
angles.

In this paper we introduce a representation based on a new class
of functions with non-linear parameters. While the representation
does not offer the arbitrary accuracy that linear basis functions can
achieve, it is expressive enough to fit complex reflectance behavior.
Importantly, a single function can capture a complete BRDF over
its entire domain of incident and exitant directions. It is therefore
uniform and compact, as well as computationally efficient.

The next section gives a brief overview of previous work. Sec-
tion 3 discusses the concept of non-linear approximation. We then
present our specific primitive functions for modeling reflectance in
Section 4. The qualitative properties of functions are discussed in
Section 5, while quantitative fits to complex reflectance functions
are presented in Section 6. Section 7 shows more results.

2 PREVIOUS WORK

Previous research focuses on various aspects of reflectance func-
tions: their derivation, their measurement, and their representation.
Torrance and Sparrow [22], and Cook and Torrance [3, 4] derived
physical models based on geometrical optics, assuming specular
V-grooves, and incorporating masking and self-shadowing effects.
Their models correctly predict the off-specular reflection that they
had previously measured [21]. Extending this work, Heet al. [9]
derived a model based on physical optics. The final representation
of the model consists of an ideal diffuse component, a directional-
diffuse component and a specular mirror component, which are all
expressed by a set of analytic expressions. These can be evalu-
ated numerically, albeit at a fair computational expense. Poulin
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Figure 1: The representation of reflectance data constitutes the essential link between the origin of the raw data and their application in global
illumination algorithms.

Figure 2: These pictures show a table exhibiting typical increasing specular reflection for increasingly grazing angles. At the same time the
diffuse component, which results from subsurface scattering, fades out; the wood-grain texture and color disappear.

and Fournier [16] constructed a model assuming a surface consist-
ing of microscopic cylinders. Oren and Nayar [14] derived a non-
Lambertian diffuse model on the basis of diffuse micro-facets.

An alternative approach for deriving theoretical models is to per-
form a deterministic or Monte Carlo simulation on a surface model
at a micro-scale. Kajiya [10] computed anisotropic reflectance
functions based on the Kirchoff laws. He proposed storing the
results in a table from which the values are linearly interpolated.
Cabral [2] also stored reflectance simulation results in a table, but
then represented them using spherical harmonics for a rendering
step. Westinet al. [24] directly estimated the coefficients of the
spherical harmonics. Hanrahan and Krueger [8] simulated subsur-
face scattering and stored the results in a uniform subdivision of the
hemisphere. Gondeket al. [7] stored results in an adaptive subdivi-
sion of the geodesic sphere.

Empirical models, on the other hand, are not constructed from
physical first principles. Instead, they capture reflectance effects
using basis functions or other generic functions. The functions
usually do not have any inherent physical meaning. Their physi-
cal validity stems from the theoretical or measured data to which
they are fitted. For this purpose the functions should be expressive,
while still being compact and efficient to use. Lambert’s approx-
imation, which assumes that the reflectance function of a diffuse
surface is simply a constant, is widespread and sufficiently accu-
rate for many applications. Phong [15] introduced one of the first
more general shading models into computer graphics. Although
it was not presented in the context of physically-based rendering,
Lewis [12] showed how a physically plausible reflectance function
can be derived from it. Ward [23] presented a model based on a
Gaussian lobe, stressing its physical plausibility and ease of use.
He successfully fitted the model to measurements of various sur-
faces and presented an equation to sample directions for it, which
is important for Monte Carlo applications such as stochastic ray
tracing. Schlick [17, 18] presented a model in which the impor-
tant factors of previous physically-based models are approximated
numerically, making it more convenient for use in Monte Carlo al-
gorithms. Fournier [6] experimented with sums of separable func-
tions for representing reflectance models, for application in radios-

ity algorithms. Schr¨oder and Sweldens [19] represented reflectance
functions using spherical wavelets. Koenderinket al. [11] recently
introduced a compact representation based on Zernike polynomials.

Our work falls within the latter category of representations. We
take a novel approach, using non-linear approximation with a sum
of one or more appropriate functions. In the next section, we ex-
plain the general principle of non-linear approximation.

3 NON-LINEAR APPROXIMATION

Approximating functions with linear basis functions is well stud-
ied. Some common basis functions are Fourier bases, Chebychev
polynomials and piece-wise linear functions. When approximating
a function, the coefficients of the basis functions are determined by
a set of linear equations. Non-linear approximation, for instance
with rational functions or with Gaussians, is somewhat less known.
In this approach, the parameters of the approximating functions are
not necessarily linear with respect to the original function. They
therefore generally have to be determined using non-linear opti-
mization. Figure 3 shows an example of a peaked one-dimensional
function that is approximated using the first four terms of a Fourier
series and using two Gaussian functions. The Fourier terms vary
in amplitude and in phase. Due to the relatively sharp peaks in the
original function, their sum is only a rough approximation, which
becomes negative at some point. The Gaussians are parametrized
by a position, a standard deviation and a size. Their sum approxi-
mates the original function much better and remains positive over
the interval. Obviously, this is not true in general, for all possi-
ble functions. However, the non-linear functions can be chosen
such that they span a region of the function space that suits a spe-
cific application. Functions can then be approximated using a more
compact representation. Furthermore, the parameters can be more
intuitive when interpreting or controlling the model.

In the context of modeling BRDFs, more general representations
are usually linear, e.g. spherical harmonics [2, 24], sums of sep-
arable bicubic polynomials [6] or wavelets [19]. Especially the
former representations may require many coefficients, for instance
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Figure 3: (a) A one-dimensional function (solid line) and its approximation by the first four terms of the Fourier series (dashed line). (b)
The same function (solid line) and its approximation by the sum of two unconstrained Gaussians (dashed line). The Gaussians (dotted lines)
correspond directly to the main features of the function.

for specular surfaces, which have reflectance functions with high
frequencies. On the other hand, many popular models are simple
non-linear approximations. The cosine lobe model [12] and the
Gaussian model by Ward [23] are probably the most widely used
examples, being simple and efficient. Instead of fitting a function
in one dimension as in Figure 3, these approximations are defined
in the four directional dimensions of the reflectance function.

In this work we take the idea of non-linear approximation a step
further, paying close attention to physical plausibility and ensuring
computational efficiency.

4 THE GENERALIZED COSINE MODEL

Our representation is a generalization of the cosine lobe model that
is based on the Phong shading model. As such, it is intended to
approximate the directional-diffuse component and possibly a non-
Lambertian diffuse component of a reflectance function. We first
discuss the cosine lobe model and then our generalization.

4.1 The Classical Cosine Lobe Model

The original cosine lobe model is attractively simple, but it has a
few major shortcomings for representing directional-diffuse reflec-
tion. Figure 5 shows the appearance of the model for different view-
ing angles. The behavior contrasts sharply with the reflectance be-
havior of most real surfaces, which appear more specular at grazing
angles, because the apparent roughness decreases (Figure 2). So
why do the reflections in the images of Figure 5 disappear? There
are two related reasons. Figure 4a shows how the shape and size
of the reflectance lobe remain the same for all incident directions.
For grazing angles, up to half the lobe disappears under the surface.
Furthermore, the remaining part has to be multiplied by the cosine
of the angle with the normal when computing the reflected power.
As illustrated in Figure 4b, this results in the albedo (the directional-
hemispherical reflectance) decreasing rapidly towards grazing an-
gles. Visually, this means that the directional-diffuse reflection will
disappear rather than increase.

In spite of these flaws, the original cosine lobe model is still
widely used for illumination simulations. The model is physically
plausible: it is reciprocal and conservation of energy can be ensured
easily. It is simple and computationally inexpensive to evaluate. It
is attractive for Monte Carlo algorithms as one can easily sample
directions according to the function. In the context of deterministic
algorithms, Arvo [1] showed how irradiance tensors can be applied
to analytically compute cosine lobe reflections on surfaces illumi-
nated by diffuse luminaires.

We briefly recall that the original cosine lobe model for a given
position and wavelength can be written formally as follows:

fr(u, v) = ρsCs cos
n α, (1)

whereα is the angle between the exitant directionv and the mirror
direction of the incident directionu, which we will denote byum.
In order not to burden our notation we will define the power of neg-
ative values as 0; the lobe is clamped to 0 for negative cosine values.
If we chooseCs to be the normalization factor(n+ 2)/(2π), then
ρs is a value between 0 and 1, expressing the maximum albedo of
the lobe. This maximum is reached for perpendicularly incoming
light. The maximum albedoρs and the specular exponentn are
the parameters that determine the size and shape of the reflectance
function. The cosine can be written as a dot product, and as men-
tioned in [1], the mirroring around the normaln can be written using
a Householder matrix:

fr(u, v) = ρsCs [um · v]
n

= ρsCs [u
T (2nnT − I)v]n. (2)

4.2 The Generalized Cosine Lobe Model

Our model can be regarded as a generalization of the original co-
sine lobe model. Most known generalizations simply scale the re-
flectance lobes in some way, violating reciprocity in the process.
Changing the model while still satisfying the reciprocity constraint
is hard. Physical plausibility, and reciprocity in particular, are there-
fore important merits of the generalization presented. Yet the rep-
resentation is conceptually simple and it retains the original advan-
tages for Monte Carlo sampling and analytical evaluation. As a
result, it can easily be integrated into existing code.

The essential observation is that Equation 2 can be generalized
by replacing the Householder transform together with the normal-
ization factor by a general3× 3matrix M :

fr(u, v) = ρs [u
TMv ]n, (3)

where we assume that the direction vectors are defined with respect
to a fixed local coordinate system at the surface. This representa-
tion provides us with 9 coefficients and an exponent to shape the
reflectance function. Of course, certain physical restrictions apply
to these parameters. In order for this reflectance function to be re-
ciprocal, the matrix has to be symmetrical:M = MT .

We can now apply a singular value decomposition ofM into
QTDQ. This yields the transformationQ for going to a new lo-
cal coordinate system, in which the matrix simplifies to the diag-
onal matrixD. Except for unusual types of anisotropy, the axes



(a)
101

(b)

ρs(θ)/ρs

806040200

1

0.5

0

Figure 4: (a) Polar plots of the classical cosine lobe reflectance model (ρs = 0.2, n = 20) with a Lambertian term (ρd = 0.8) in the incidence
plane, for incidence angles0◦, 30◦ and60◦. (b) The relative decrease of the albedo of the directional-diffuse term as a function of incidence
angle.

Figure 5: Rendered pictures of a scene with the classical cosine lobe model, for various viewing angles. The glossy reflection on the table
disappears at grazing angles, which is exactly the opposite of real surface behavior.
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Figure 6: The incident directionu and exitant directionv are de-
fined in a local coordinate system at the surface. The coordinate
system is aligned to the normal and to the principal directions of
anisotropy, if any.

are now aligned to the normal and to the principal directions of
anisotropy, as illustrated in Figure 6. The diagonal matrix can be
seen as weighting the terms of the dot productu · v:

fr(u, v) = ρs [Cxuxvx + Cyuyvy + Czuzvz]
n. (4)

This formulation of the model is the most convenient to use. In
the case of isotropic reflection,Cx = Cy. The original cosine lobe
model is obtained by choosing−Cx = −Cy = Cz = n

√
Cs. How-

ever, much more expressive functions than the cosine lobe model
can be obtained by varying the different parameters, as we will
show in more detail in Section 5. Note that the function is de-
fined for all incident and exitant directions. It is thus fully four-
dimensional and we apply and fit it as such.

4.3 The Generalized Function as a Cosine Lobe

The generalized function has an elegant and very practical property:
for each given incident directionu the function can be rewritten
as a scaled version of an ordinary cosine lobe. Simply rewriting
Equation 3:

fr(u, v) = ρs ‖u
TM‖n [

uTM
‖uTM‖

v]n

= ρsCs(u) [u
′ · v]n

= ρsCs(u) cos
n α′. (5)

The directionu′ = (uTM/‖uTM‖)T is a transformed and nor-
malized version of the incident directionu, and the angleα′ is
its angle with v. The scaling factorCs(u) = ‖uTM‖n is a
power of the normalization factor and therefore varies with the in-
cident direction. For the specific case of Equation 4, the direction
u′ = (Cxux, Cyuy , Czuz)T /

√
C2xu2x +C2yu2y + C2zu2z and the

scaling factorCs(u) =
√
C2xu2x + C2yu2y + C2zu2z

n
. This observa-

tion shows how the original cosine lobe function is now generalized
in its orientation and its scaling. The changes in orientation and
scale are specific results of Equation 3 – if they were just arbitrary,
reciprocity would generally not be preserved.

Practically, the equation makes it straightforward to continue us-
ing the same Monte Carlo sampling strategies and deterministic
evaluation techniques as for the original cosine lobe model. One
only needs to substitute the mirror directionum by u′ (or the angle
α by α′) and scale the results as required. For instance, the albedo
ρs(u) for each incident directionu can be computed analytically,
using the procedures presented by Arvo [1]. This is specifically
useful to ensure energy conservation.
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Figure 7: (a) Polar plots of the classical cosine lobe model (ρs = 0.2, n = 20) with a generalized diffuse term (ρd = 0.8, n = 0.5) and
an additional mirror term (Rm = 0.4). (b) The albedos of the diffuse and directional-diffuse terms,ρd(θ) andρs(θ) respectively, decrease
towards grazing angles; the mirror termρm(θ) gradually takes over.

Figure 8: Rendered pictures of a scene with the classical cosine lobe model, now including the mirror term and a generalized diffuse term.
The mirror term gradually takes over from the directional-diffuse term, and the diffuse term fades out. Even with these minor changes the
table surface already shows a more realistic reflective behavior.

5 QUALITATIVE PROPERTIES

In this section, we illustrate the qualitative properties of our gener-
alized model. We construct a few simple reflectance functions with
diffuse, directional-diffuse and specular components, to demon-
strate how the model can simulate important aspects of real-life re-
flectance behavior. Section 6 will then demonstrate the quantitative
properties of the model, by fitting sums of primitive functions to a
complex physically-based model and to actual measurements.

5.1 Non-Lambertian Diffuse Reflection

An effect apparent in the pictures of Figure 2 is the fading out of the
diffuse component for grazing angles. As more light is reflected off
the coating of the surface, the subsurface scattering responsible for
the diffuse reflection diminishes. The surface looks less saturated
and the wood texture disappears. While our generalized cosine lobe
model encompasses the Lambertian model (by settingn = 0), a
more generalrotationally symmetricdiffuse component can be de-
rived from Equation 4, by settingCx = Cy = 0:

fr(u, v) = ρdCd [uzvz]
n, (6)

where the normalization factorCd = (n + 2)/(2π), andρd is the
parameter between 0 and 1 specifying the maximum albedo. For
grazing incident or exitant directions the reflectance decreases pro-
portionally to a power of the cosine of the angle with the normal.
This instance actually corresponds to the model presented by Min-
naert [13], in the context of modeling the reflectance of the lunar
surface. The non-Lambertian diffuse component is plotted in Fig-
ure 7a (appearing as the small circular component near the origin),
along with directional-diffuse and mirror components that will be

discussed in the next section. Figure 7b shows the behavior of the
albedoρd(u) as a function of incidence angleθ, normalized by the
parameterρd. Figure 8 illustrates the effect visually: the diffuse
component of the table surface fades out for grazing angles.

5.2 Specularity at Grazing Angles

The other important visual effect shown in the pictures of Figure 2
is the increasing specularity of the polished table surface at grazing
angles. This behavior can be accounted for by extending the model
of a diffuse lobe and a directional-diffuse lobe with a specular mir-
ror term. The directional-diffuse lobe can in the simplest case be
an ordinary cosine lobe. The mirror term can be made to reflect a
fraction of the power that is not reflected by the directional-diffuse
lobe. A simple instance of these two components thus becomes:

fr(u, v) = ρsCs [um · v]
n (7)

+(ρs − ρs(u))Rm δ(um − v),

whereδ(um − v) is the Dirac delta function with respect to the
canonical measure on the sphere. In this case it is convenient to
chooseCs = (n + 1)/(2π). The factorρs − ρs(u) is the differ-
ence between the directional-diffuse scaling factor and the actual
albedo for directionu. The parameterRm expresses the fraction
of the power lost in the directional-diffuse lobe that is reflected in
the mirror term. In Monte Carlo simulations this can be taken quite
literally. One can sample a direction according to the cosine lobe.
Any sample is then tested against the cosine of the angle with the
normal, with rejection sampling. The fractionRm of rejected sam-
ples is sent into the mirror direction. In analytical computations
each of the terms, including the mirror term, can be computed.
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Figure 9: (a) Polar plots of the generalized cosine lobe model (ρs = 0.2, n = 20, Cz/Cx = 0.95) with a Lambertian term (ρd = 0.8). The
lobes are slightly off-specular and increase in size towards grazing angles. (b) The albedo of the directional-diffuse term only decreases for
larger incidence angles as a result.

Figure 10: Rendered pictures of a scene with the generalized cosine lobe model. The off-specular directional-diffuse reflectance of the table
surface gradually increases for grazing angles.

Figure 7 presents an example function, including the non-
Lambertian diffuse reflection that was discussed in the previous
section. Note that the mirror term is actually a Dirac delta func-
tion; it is broadened here to visualize its behavior. Figure 7b dis-
plays the albedosρs(θ) andρm(θ) for the directional diffuse and
the mirror terms, respectively. Figure 8 then shows the example
scene rendered with the extended model.

The results look reasonably realistic because the mirror term
is a rough approximation of an actual Fresnel term multiplied by
masking-shadowing and roughness factors (e.g. [9]). If it is known,
a more accurate approximation can be used by attenuating the mir-
ror term, so thatRm becomes a function of incidence angle.

5.3 Off-Specular Reflection

Application of the model becomes more interesting by varying the
individual parameters of Equation 4. Torrance and Sparrow [21]
already observed that the directional-diffuse lobe for a given inci-
dent direction generally does not reach its maximum for the mirror
direction, but rather for a more grazing direction. At the same time
the size of the reflectance lobe increases. The original cosine lobe
model obviously does not account for these effects. This short-
coming is sometimes overcome by dividing by the cosine of the
exitance angle, which breaks reciprocity. In the generalized model,
parametersCz that are smaller than−Cx = −Cy yield a range of
off-specular reflection effects, without compromising the physical
plausibility. Figure 9 gives an example with moderately increasing
reflectance, and Figure 10 shows a set of rendered images. The ta-
ble surface exhibits off-specular reflection. It looks mostly diffuse
from above, while the directional-diffuse component increases for
grazing angles.

5.4 Retro-Reflection

Many surfaces not only scatter light in the forward direction, but
also backwards, in the direction of the illuminant. This phe-
nomenon is called retro-reflection. The moon surface is an extreme
example, where a large fraction of light from the sun is reflected in
the incident direction. In the generalized model, a retro-reflective
lobe can be represented in the same uniform framework by using
a set of parametersCx, Cy andCz that are all positive. The re-
flectance measurements of paint in section 6.2 will illustrate this
effect.

5.5 Anisotropy

Anisotropic reflection can be modeled with a single primitive func-
tion, by assigning different values to the parametersCx andCy.
As with the parameterCz that controls the off-specular reflection,
this will pull the reflectance lobes for all incident directions in a
preferential direction and scale them. More general anisotropy, e.g.
with a splitting lobe, can be obtained by constructing a matrixM
for Equation 3 that is not necessarily symmetrical. Adding a re-
flectance term with its transposeMT then yields a new reciprocal
model.

6 QUANTITATIVE PROPERTIES

In this section, we show how the model is also suitable for repre-
senting complex real-life reflectance functions. The representation
is a sum of several primitive functions of the form of Equation 4.
Absorbing the albedoρs in the other parameters, each primitive
functioni is defined by the parametersCx,i(= Cy,i), Cz,i andni.
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Figure 11: Polar plots of the fitted reflectance model (dashed lines) against the original physically-based model of a roughened aluminum
surface (solid lines) in the plane of incidence, forθ = 0◦, 30◦, 60◦, at 500nm. The reflectance function becomes more off-specular and
strongly increases in size towards grazing angles. The sum of generalized cosine functions captures these effects.
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Figure 12: Plots of the original physically-based model of roughened aluminum (top row, a) and of the fitted reflectance model (bottom row,
b), now multiplied by the cosines of the incidence and exitance angles with the normals, fitted and shown over the entire hemisphere, for
various incidence angles.

The model can thus be written as:

fr(u, v) =
∑
i

[Cx,iuxvx + Cy,iuyvy + Cz,iuzvz ]
ni . (8)

The model is fitted to the BRDF of aluminum, based on the
physically-based reflectance model of Heet al., and to the mea-
sured BRDF of blue paint. We minimize the mean-square error of
the reflectance functions multiplied by the cosines of the incidence
and exitance angles with the normal. As the primitive functions
are non-linear, a non-linear optimization technique is required to
determine the parameters. The Levenberg-Marquardt optimization
algorithm has proven to be efficient for this application; computing
each approximation requires only a few minutes in a standard nu-
merical package. This is not a serious penalty, as it only has to be
done once for each measured material.

In both case studies, we first look at the BRDFs in the incidence
plane, and then in the entire function space. In the incidence plane
the function space is two-dimensional, depending on the incident
polar angle and the exitant polar angle. The entire function space
of isotropic BRDFs is three-dimensional, additionally depending
on the exitant azimuthal angle.

6.1 Fit to a Physically-Based Model

The reflectance model derived by Heet al.[9] is generally acknowl-
edged as the most sophisticated model in use in computer graphics.

It consists of a Lambertian term, a directional-diffuse term and a
mirror term. Here we concentrate on approximating the directional-
diffuse term. In our example, the Lambertian term and the mirror
term are mostly negligible, but in any case representing and using
these terms is straightforward. We present the results for roughened
aluminum, as in their original paper for wavelengthλ = 500nm,
roughnessσ0 = 0.28µm and autocorrelation lengthτ = 1.77µm.

Figure 11 shows the results of a fit in the incidence plane, using
the sum of three primitive functions. It is important to note that the
function has not been fitted for each of the individual lobes, which
would be a lot easier, but to the reflectance function as a whole. The
fit is visually perfect, except for more grazing angles. In this regime
of angles, most of the difference is due to the masking term, which
is not present in the representation. These values are less important,
however, as they are multiplied in illumination computations by the
cosine of the angle between the direction and the surface normal.
Additionally, the mirror reflection becomes more important than
the directional-diffuse reflection for grazing angles.

Figure 12 shows the results of fitting the approximation to the
reflectance function in the entire three-dimensional space of direc-
tions. The functions are plotted for three different incidence angles,
in a uniform parametrization of the hemisphere [20]. The creases
along the diagonals of the square are a result of the parametrization
and are not related to the functions. The functions are multiplied
by the cosine of the exitance angle with the normal, so that the vol-
umes below the surfaces are proportional to the albedos. Both the
shapes of the functions and the albedos match very well.
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Figure 13: Polar plots of the fitted reflectance model (dashed lines) against the original measured BRDF data of blue paint (solid lines) in the
plane of incidence, forθ = 0◦, 35◦, 65◦, at550nm. The model successfully reproduces both the increasing retro-reflection and off-specular
reflection.
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Figure 14: Plots of the original measured model of blue paint (top row, a) and of the fitted reflectance model (bottom row, b), now fitted and
shown over the entire hemisphere, for various incidence angles.

6.2 Fit to Reflectance Measurements

The second comparison is with the measured reflectance data of
a blue paint sample (spray-painted latex blue paint, Pratt & Lam-
bert, Vapex Interior Wall Base 1, Color #1243, Cal. III) [5]. Fig-
ure 13 shows the data and the approximation in the incidence plane
at550nm, for three incidence angles.

Compared to the strong forward-scattering behavior of the
roughened aluminum, the paint is largely diffuse. Due to measure-
ment noise, the data are more irregular. Still, there are important
other phenomena. The forward scattering lobe increases rapidly
for grazing angles and is very off-specular. The measurements did
not include highly grazing angles, for which theory predicts a drop-
off. The measurements did show increasing retro-reflection. The
approximation, which uses a sum of three directional-diffuse func-
tions and a Lambertian term, captures this effect.

Figure 14 shows the data and the approximation fitted over the
three-dimensional space of incident and exitant directions. Table 1
lists the coefficients for this approximation, illustrating how sim-
ple and compact the model is. The positive value ofCx for lobe I
indicates that it is a retro-reflective lobe, while lobes II and III ac-
count for the forward scattering. The ratios of the parametersCx
andCz give an idea of how off-specular the lobes are and how fast
they increase in size for grazing angles. Note that the exponents
are not necessarily integers. For Monte Carlo simulations using the
model, this is generally not a problem. For analytical computations
the exponents would have to be constrained to integer values.

Lobe Cx = Cy Cz n
I 0.86 0.77 18.6
II −0.41 0.018 2.58
III −1.03 0.70 63.8
Diffuse 0.13

Table 1: The coefficients of the representation for the three-
dimensional fit of Figure 14.

7 RESULTS

We have approximated the measured reflectance data of the blue
paint presented in Section 6.2 and of a standardized steel sample
(Matte finished steel, Q-Panel Laboratory Products, Q-panel R-46)
at 6 discrete wavelengths. The resulting models were then used
for global illumination rendering, using a Monte Carlo path tracing
program. The implementation required only a few additional lines
of code. The reflectance functions are evaluated using Equation 8.
For sampling an exitant direction for a given incident direction we
construct a probability density function that is a linear combination
of the primitive cosine reflectance lobes.

Figure 15 shows a rendering of a simple scene with two spheres,
a Q-panel, and two colored light sources, positioned symmetrically
with respect to the viewer. A larger white light source above the
viewer illuminates the whole scene. The sphere on the left is ren-
dered with a Lambertian diffuse approximation of the measured
blue paint, while the sphere on the right is rendered with the gener-
alized reflectance model. The latter sphere has both red and green
highlights due to strong forward scattering. These are lacking on
the Lambertian sphere. With a light source near the viewer, the right
sphere has a slightly flatter appearance due to retro-reflection. The
Q-panel has a completely different appearance, displaying a blurry
metallic reflection of the colored lights and of the objects. The
representation successfully captures these very different reflectance
characteristics.

8 CONCLUSIONS

We have introduced an efficient representation for a wide range of
bidirectional reflectance distribution functions. It is an interesting
alternative for previous models of directional-diffuse reflectance,
which required either simplified single-term representations, com-
plex analytical expressions for specific classes of functions, or gen-
eral but large representations with linear basis functions.



Figure 15: Rendered picture of a scene with two spheres and a Q-panel, illuminated by two colored light sources and one larger white light
source. The sphere on the left has a Lambertian approximation of the measured paint reflectance; the sphere on the right is rendered with the
non-linear approximation. The Q-panel has the non-linear approximation of the measured steel reflectance.

• The representation is compact. Each primitive function is de-
termined by two or three coefficients and an exponent. Be-
cause the representation is memory-efficient, any complex
wavelength dependency can be modeled by constructing in-
dependent approximations at discrete wavelengths.

• The functions are expressive. They can represent complex
reflectance behavior, such as off-specular reflection, increas-
ing directional-diffuse reflectance for grazing angles, retro-
reflection and non-Lambertian diffuse reflection in a uniform
way.

• The functions handle noise in the raw reflectance data grace-
fully. They can capture sharp reflectance lobes without suf-
fering from small spurious errors in the data. If the data are
sparse, the model interpolates them naturally.

• The functions themselves are physically plausible, irrespec-
tive of how they were constructed. They are inherently re-
ciprocal. Energy-conservation can be verified analytically for
each incident direction.

• On the algorithmic side, the representation is efficient and
easy to use in both local and global illumination algorithms.
Its simplicity and uniformity make it practical for implemen-
tation in hardware. In Monte Carlo algorithms, reflection
directions for a given incident direction can be sampled ac-
cording to the transformed cosine lobe. In deterministic al-
gorithms, illumination from diffuse emitters can be computed
analytically, using a straightforward extension of the calcula-
tions for ordinary cosine lobes.

• While the representation cannot approximate all possible re-
flectance functions to any desired accuracy, it adequately rep-
resents a range of measured BRDF data, which usually only
have a very limited accuracy. In our tests, we have obtained
satisfactory results with as few as three primitive functions to
represent directional-diffuse reflections from roughened met-
als and paints. Broad, glossy reflectance lobes are relatively
easy to approximate. Sharp directional-diffuse peaks, such as
for smooth metal surfaces, may be harder to represent, due to
a strong dependency on the Fresnel factor, which is not ex-
plicitly included in the representation.

As future work, we will look into the details of representing
anisotropic reflectance measurements with one or more terms of
the current model, e.g. to model the effect of splitting reflectance
lobes at anisotropic surfaces.
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Image-Based BRDF Measurement
Including Human Skin
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Abstract: We present a new image-based process for measuring the bidirectional
reflectance of homogeneous surfaces rapidly, completely, and accurately. For
simple sample shapes (spheres and cylinders) the method requires only a digital
camera and a stable light source. Adding a 3D scanner allows a wide class of
curved near-convex objects to be measured. With measurements for a variety of
materials from paints to human skin, we demonstrate the new method’s ability
to achieve high resolution and accuracy over a large domain of illumination and
reflection directions. We verify our measurements by tests of internal consistency
and by comparison against measurements made using a gonioreflectometer.

1 Introduction

To render accurate images reliably and easily, the reflectance of surfaces must be sim-
ulated accurately. The most direct way to ensure correct simulation is to use physical
reflectance measurements. Such measurements can guide the choice of parameters for
existing reflectance models, and if they are sufficiently complete they can be used as
input for renderers or provide the basis for entirely new models. To completely capture
the reflectance of an opaque surface, one must measure the bidirectional reflectance
distribution function (BRDF). BRDF measurements have traditionally been made with
purpose-built devices known as gonioreflectometers, which are rare and expensive.

This paper presents a system that measures reflectance quickly and completely with-
out special equipment. The method works by taking a series of photographs of a curved
object; each image captures light reflected from many differently oriented parts of the
surface. By using a curved test sample and an imaging detector, and by using automated
photogrammetry to measure the camera position, we eliminate the precise mechanisms
needed to position the source and detector in a conventional gonioreflectometer. By
knowing the sample shape and the light source position, we can analyze the photographs
to determine the sample’s BRDF. With only a light source and a digital camera, objects
of known, regular shape can be measured; adding a 3D geometry scanner extends the
technique to cover a whole class of surfaces, including human skin, that are impractical
to measure by other methods. Although the apparatus is simple and the measurement
rapid, the resulting data are accurate and can be very complete, covering the full hemi-
sphere almost to grazing angles.

2 BRDF Background

The BRDF, fr, completely describes the reflectance of an opaque surface at a single
point. Its value measures the ratio of the radiance L exiting the surface in a given

*Current address: Microsoft Research, One Microsoft Way, Redmond, WA 98052-6399
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direction to the incident irradiance I at a particular wavelength � from an incident solid
angle d!i about a given illumination direction. Representing the incident and exitant
directions in spherical coordinates according to Figure 1,

fr(�i; �i; �e; �e; �) =
dL(�e; �e)

dI(�i; �i)
: (1)

The BRDF is thus a function of five variables, but its domain is reduced somewhat by a
symmetry called reciprocity, which states that reversing the light’s path does not change
the reflectance:

fr(�1; �1; �2; �2; �) = fr(�2; �2; �1; �1; �):

In this paper we will concentrate on the im-

θi θe

φi

φe

N

dω i

Fig. 1. Geometry of surface reflection.

portant class of isotropic materials, for which the
reflectance is independent of rotating the inci-
dent and exitant directions about the surface nor-
mal. For these surfaces, the BRDF depends only
on �� = �e � �i, rather than on �i and �e sep-
arately, which reduces the domain from five to
four variables:

fr(�i; �i; �e; �e; �) = fr(�i; �e;��; �): (2)

In computer graphics, the wavelength depen-
dence of BRDF is of interest only for the pur-
poses of determining colors seen by human ob-
servers, so the continuous wavelength dimension
can often be replaced with an appropriate discrete set of three measurements (R;G;B);
further reducing the isotropic BRDF to a vector-valued function of three variables.

3 Overview of Method

A straightforward device for measuring isotropic BRDFs is shown in Figure 2a, illus-
trating the three mechanical degrees of freedom required. A flat sample is illuminated
by a light source, and a detector measures the complete distribution of reflected light by
moving around the entire hemisphere. To measure a full BRDF, this process must be re-
peated many times, moving the light source each time to measure a different incidence
angle.

Source

Detector

Sample

(a)

Source

Detector

Sample

(b)

Source

Camera

Sample

(c)

Fig. 2. Three BRDF measurement devices, including our image-based approach (c).
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Because only the relative positions of the sample, source, and detector are relevant,
all the same measurements could be made using the device of Figure 2b, in which
the sample rotates with two degrees of freedom but the detector has only one and the
source is fixed. The number of degrees of freedom remains the same, and all the same
configurations of source, sample, and detector can be achieved.

If we replace the flat sample with a curved one, we can acquire data from many
sample orientations simultaneously. Since every part of the sample’s surface has a
different orientation, we can use a camera to measure different parts of the surface
instead of rotating the sample, as shown in Figure 2c. In this device, the two dimensions
of the image sensor substitute for the two degrees of freedom of sample rotation. If there
is sufficient curvature, we can make all the same measurements as the other devices, and
by measuring two degrees of freedom in parallel we can greatly reduce the measurement
time while increasing the sampling density.

This is the essence of image-based BRDF measurement: in an image of a curved
object taken using a small light source, every pixel is in effect a BRDF measurement.
Given a 3D model of the sample, camera, and light source, we can determine the inci-
dent and exitant directions for each pixel relative to the surface normal, as well as the
irradiance due to the light source. Together with the radiance measured by the camera,
these are all the data required to compute the BRDF.

Because a single image will only cover a two-dimensional subset of the possible
BRDF configurations, many images are required to measure the whole domain. In the
case of an isotropic BRDF, we are filling up the three-dimensional domain of the BRDF
by measuring two-dimensional sheets, so we will need a one-dimensional sequence of
images, with the camera or light source positioned differently in each.

4 Related Work

Traditionally [19,21], the three or four angular dimensions of the BRDF are handled by
specialized mechanisms that position a light source and a detector at various directions
from a flat sample of the material to be measured. Because three or four dimensions
must be sampled sequentially, reflectance measurements are time-consuming, even with
modern computer controls. Even a sparse sampling of the incident and exitant hemi-
spheres can take several hours.

More recently, image-based methods have been used to speed measurements by
gathering many angular samples at once. These methods, including the method pre-
sented in this paper, use a two-dimensional detector—the image sensor of a digital
camera—to measure a two-dimensional range of angles simultaneously, leaving one or
two dimensions of angle to be sampled by sequential measurements.

These can be categorized in two groups: those that attempt to measure the BRDF
over its entire bihemispherical domain and those that measure some useful subset. The
BRDF over an appropriate subset of the domain can be used to deduce characteristics of
the surface microgeometry or to find parameters for a low-dimensional BRDF model.

One example of measuring a subset of the domain is the work of Karner et al. [15],
who use images of a planar sample to measure the BRDF over a limited range of inter-
esting angles. They use these data to fit coefficients for a simple reflectance model.

Ikeuchi and Sato [14] estimate reflectance model parameters using a surface model
from a range scanner and a single image from a video camera. They use a curved sam-
ple to capture a larger range of incidence and exitance angles, but their data are still
constrained to the angles provided by the illumination and view directions of a single
image. Sato et al. [20] extend this method to deal with spatial variations in BRDF by
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acquiring a sequence of images while the sample rotates. The image sequence pro-
vides samples along a one-dimensional path for each surface point; a simple reflectance
model is fit to these data.

The surface optics literature also includes a number of approaches to measure a
subdomain of the BRDF rapidly; these are generally used to deduce physical param-
eters of the surface itself, such as feature size on integrated circuits [12] or surface
roughness [3], and often measure only at a single wavelength.

Ward describes a device [23] that is able to measure the complete BRDF of an-
isotropic materials. His camera captures the entire exitant hemisphere at once with a
hemispherical mirror and a fisheye lens. The source and sample are moved mechani-
cally to cover all incident angles.

More recently, Lu, Koenderink, and Kappers [17] use a cylindrical sample to give
broad angular coverage in the incident plane, using multiple images with different
source positions to cover all angles.

Like these other image-based systems, the system presented in this paper uses a
camera to sample a two-dimensional set of angles in a single measurement, so it shares
their advantages in speed and sampling density over traditional approaches. It can be
thought of as a combination and extension of the techniques of Ward and Lu et al. By
adopting a curved sample, it avoids the fisheye lens and hemispherical mirror of Ward’s
method and permits measurements much closer to grazing. 1 By using samples with
compound curvature, we extend coverage from the incidence plane to the entire BRDF
domain. We go beyond both of these techniques in allowing hand-held positioning,
which obviates any precision source positioning mechanism, and in extending the tech-
nique to arbitrary convex objects. The method of this paper was derived from that in
the dissertation of the first author [18], but it works with more general shapes, requires
less equipment, and is simpler to use.

The following sections describe the specifics of our system, give the results of mea-
suring several materials, and demonstrate the accuracy of those results by comparing
them to measurements from a gonioreflectometer of verified accuracy.

5 Method
Our image-based technique can measure
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Fig. 3. Schematic of measurement setup.

the BRDF of two different classes of ob-
jects: simple geometric shapes, for which
the 3D shape can be defined analytically,
and irregular shapes, for which the 3D
model is provided by a range scanner.

Geometric shapes, such as spheres and
cylinders, can be modeled and aligned pre-
cisely, giving measurements with low error.
This approach also requires less equipment,
since a range scanner is not required. How-
ever, only certain materials can be mea-
sured using these shapes—typically only
paints or other man-made finishes that can be applied to such an object.

If a 3D description of the sample shape is available, we can measure any convex
object that has a uniform BRDF. Since we no longer have to control the geometry, it
becomes possible to measure many more interesting materials. This generality has a
cost, however: the limitations of the scanner introduce geometric errors that lead to
noise in our results.

1Ward’s device covers angles of up to 45� to 75�, depending on azimuth angle [10].
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We use a hand-held camera to photograph the sample from a sequence of posi-
tions, with a single stationary light source providing the only illumination. The camera
moves from a position next to the light source, which allows measurement of near-
retroreflection, to opposite the light source, where we measure grazing-angle reflection
(Figure 3). A few additional photographs, described below, are also taken to measure
the location and intensity of the light source. In all, a typical measurement session,
including the range scan and all the photographs, takes about half an hour.

The equipment we use to make our measurements includes:

� A digital still camera using a 1.5 megapixel CCD sensor with an RGB color filter
array (Kodak DCS 420).

� A simple industrial electronic flash, rated at 400 W-sec output (Photogenic Ma-
chine Co. EP377).

� A structured-light range scanner, for measurements of irregularly-shaped samples
(Cyberware 3030/PS).

From each pixel in each measurement image we derive one sample somewhere in
the domain of the BRDF; the locations of the samples are determined by the geometry of
the sample’s surface and the arrangement of camera, source, and sample. As explained
in Section 3, each image measures a two-dimensional set of BRDF configurations, but
we take multiple images (typically about 30) from different positions to cover the full
three-dimensional BRDF.

5.1 Calibration

Turning the camera images into accurate BRDF measurements requires both geometric
and radiometric calibration. Geometric calibration establishes the relative positions of
the light source, sample, and camera for each measurement image, and radiometric
calibration determines the irradiance due to the source and the relationship between
pixel values and radiance reflected from the sample.

Geometric calibration. Geometric calibration is done with photogrammetric tech-
niques, using machine-readable targets that are placed on a structure positioned near
the sample [18 (Appendix C)]. These targets are located and identified automatically
in each image using ID codes embedded in the targets. The information that must be
derived from the target locations includes:

� The position of the light source.
� The camera pose for each measurement image.
� The pose of the sample.

The poses of the camera are found from the image-plane target locations using bundle
adjustment2 [4,7,18 (Appendix B)]. Since our targets are recognized automatically and
coded with unique ID numbers, no manual intervention is needed to establish corre-
spondence between points in the various images.

There are three sets of targets: the sample targets, fixed with respect to the sample,
the source targets, fixed with respect to the source, and the stationary targets, fixed in
the room. The positions of the camera in the room are obtained using the stationary

2Bundle adjustment takes the image-plane projections of m points in n images and computes the m 3D
locations of the points and the n camera poses by solving a nonlinear system of equations.
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targets. Three extra images that include both the stationary targets and the source tar-
gets allow us to extract the position of the source in the room. The sample targets are
used to determine the position of the sample relative to the camera positions. With the
knowledge of these three relationships, the incident and exitant directions relative to
the surface normal can be computed for any point on the sample. When measuring the
skin of a human subject, which may change position from one image to the next (see
Section 6.4), the sample position is determined separately for each frame, but when
measuring inanimate samples the stationary targets are redundant, and are used only to
improve position estimates. Gortler et al. [9] also used encoded targets to determine
camera pose, but we have extended the technique to find sample and source positions;
we also use more targets to cover a wide angular range robustly.

Radiometric calibration. In order to make BRDF measurements for each pixel, we
must know the radiance reflected to the camera and the irradiance due to the source. To
use a digital camera to measure radiance we must characterize both the optoelectronic
conversion function (OECF), which relates the digital count reported for a pixel with
the image-plane exposure, and the flat-field response, which relates the image-plane
exposure to radiance in the scene. We used a calibrated reference source (Labsphere
CSTM-USS-1200) to measure each of these camera characteristics.

To measure the OECF, we removed the camera lens to expose the CCD sensor
directly to the source. We used a variable iris aperture and individual control of the
four lamps in the source to vary irradiance through a range of more than 1600:1. A
previously calibrated digital camera was used as a reference.

To measure the flat-field response, we remounted the lens (which is the principle
source of flat-field variation) and took a series of exposures with the source appearing
at various positions on the image plane. By fitting a biquadratic function to these im-
ages, we approximated the spatial variation across the image plane and were able to
compensate for it. This procedure differs from that used previously [18 (Appendix A)]
in order to reduce flare associated with the lens used here.

To determine the irradiance at each location on the surface, we approximated the
source as a single point.3 In order for this model to be valid, the source must be small
compared to the distance to the sample, and its angular intensity distribution must be
uniform. We measured the angular distribution of the source by capturing calibrated
images of a flat, uniform surface illuminated by the flash and verified that, with an
additional diffuser, it is sufficiently uniform over the range of angles we use. To get
the absolute magnitude of the BRDF correct, we measured the intensity of the light
source relative to the camera’s three color sensitivities by photographing a diffuse white
reference sample (a calibrated Spectralon target from Labsphere, Inc.) in a known
position.

5.2 Data processing

Processing the measurement images to extract BRDF samples involves two steps. First,
the photogrammetric targets are used to determine the geometric arrangement of the
sample, camera, source, and reference white target. Second, all this information is
given to a derenderer, which computes the BRDF values.

3While the real source only approximates a point, compensating for its solid angle requires a deconvolu-
tion process that is not trivial. We follow accepted practice of reporting our raw measurements and the solid
angle of the source, which is a circle subtending 1:3 � 10

�3 steradians. The solid angle of the camera’s
aperture, � 6� 10

�5 steradians, is negligible by comparison.
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We begin by extracting the target positions in each image. This gives us the 2D im-
age positions of the targets visible in each image and their correspondence in different
images. This information is used to solve a bundle adjustment system, which computes
the poses of all the cameras and the 3D locations of all the targets. It then remains to
locate the model of the sample in the same coordinate system. For a cylindrical sam-
ple, a cylinder is automatically fit to the 3D locations of the sample targets, which are
attached to the sample’s surface. If the sample is a sphere, the user manually specifies
points on the boundary of the sample in 3 or 4 images, and a tangent sphere is fit to
the corresponding rays to define the sample model. For a sample of arbitrary shape, we
scan the sample and the sample targets together. The targets can then be automatically
recognized in the luminance image produced from the scan and transformed to their
3D positions within the scan. A rigid-body transformation aligns these scanned 3D
positions with the 3D positions of the corresponding targets in the bundle adjustment
results, putting the scanned 3D geometry in the same coordinate system as the camera
and source positions.

The derenderer is derived from a ray-tracing renderer, and its input is a scene de-
scription including the cameras, the light source, and a model of the sample. It uses
standard rendering techniques [8] to find the intersection point of each pixel’s viewing
ray with the sample surface and to compute the irradiance due to the source. Rather than
using a BRDF value to compute the radiance reflected to the pixel, as a renderer would,
the derenderer instead divides the pixel’s measured radiance by the irradiance to obtain
the BRDF value. The derenderer’s output is a list of BRDF samples, each including
the incident direction, the exitant direction, and the BRDF value for that configuration.
Separate sample sets are generated from the camera’s red, green, and blue pixels.

If a range scan is providing the model of the sample, the points from the scanner
are tessellated to define the surface for ray intersection. To reduce the effects of scanner
noise, we derive a normal to compute the BRDF at each point by fitting a plane to a
weighted set of nearby points.

6 Results

We have used our image-based system to measure the BRDFs of several materials.
Here, we present three materials: matte gray paint, a squash, and human skin. The matte
gray paint, applied to a cylinder, allows us to verify that our BRDF measurements are
accurate by comparing them with gonioreflectometer measurements. The squash and
human skin demonstrate the measurement of two surfaces impractical to measure in a
traditional gonioreflectometer. We have measured other materials ranging from paints
to felt, a few of which are shown in rendered images.

For each of the samples, we show measurements in the incidence plane for several
values of �: Plotted with the measurements is a slice of a smooth BRDF reconstructed
using local quadratic regression in the BRDF’s 3D domain [5]. This technique defines
a smooth, continuous function over the entire BRDF domain that follows the samples
and interpolates across unsampled areas. Each curve is a slice of a 3D function fit to all
the data points, not just a fit to the points visible with it. Since the curve accounts for
more points than are shown, it may sometimes diverge slightly from the points. In these
plots, backward scattering is on the left and forward on the right; the specular direction
is marked by a vertical gray line.
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6.1 Gray cylinder

To verify the correctness of our measurements, we painted a section of aluminum tub-
ing (outside diameter 6 inches) with a sprayed gray primer. The resulting sample has
a very uniform surface and is well modeled by an ideal cylinder. We measured its ge-
ometry and position using a strip of photogrammetric targets along each edge; a typical
measurement image is shown in Figure 4. Because a cylinder curves only along one di-
rection, the resulting data lie very near a two-dimensional slice of the three-dimensional
(isotropic) BRDF domain; this allows us to concentrate our measurement points on the
incidence plane.

Figure 6 summarizes the results of the gray cylinder measurement. Note the low
noise and broad coverage—the results seem reliable out to at least 80 �. The raw points
shown include measurements both in the forward direction (all � e for the �i indicated on
each plot) and in the reciprocal direction (all � i for the indicated �e): the scatter shown
includes any deviations from reciprocity. The low scatter serves as a first validation of
our measurements, since the reciprocal measurements are independent.

We measured a matching flat sample using a gonioreflectometer [6] designed ac-
cording to ASTM recommendations [1] and verified to an accuracy of 5%. The go-
nioreflectometer results are plotted with a dashed line. Note the good correspondence
to our image-based measurements; this independent measurement further validates the
correctness of our method.

6.2 Squash

Having verified the accuracy of our technique, we applied it to more interesting objects.
One of these, a squash, illustrates some of the strengths of our method. There is no
practical way to obtain a flat sample of this surface to use in a traditional gonioreflec-
tometer.

A typical measurement image is shown in Figure 5. Below the squash, one can
see the support structure containing the sample targets (see Section 5.1); the stationary
targets can be seen above it. Figure 5 also indicates the approximate subset of the
geometry used in the derendering process. The top was truncated by the limits of our
3D scanner; we deleted the lower part to reduce computation time and storage demands.
Even this small subset of the available data results in over 300,000 BRDF samples per
channel.

The first column of Figure 7 shows the coverage obtained with this sample. The
dots are plotted in a polar coordinate system, with radius indicating � e or �i and angle
indicating �� (�� = 0 is at the bottom; the incidence plane, where �� = 0 or 180� is
marked by the vertical line). We include both the forward measurements (fixed � i) and
reciprocal measurements (fixed �e); reciprocity allows us to use these points to help fill
the hemisphere. The points in each plot fall on rings, each consisting of samples from
one measurement image. The rings appear because the angle between the illumination
and viewing direction is nearly constant within each image. There are never any data
within a small circle around the incident direction because we cannot physically place
the camera at the source position to measure exact retroreflection.

Because of the squash’s compound curvature, much of the BRDF domain is sam-
pled. There are some gaps in the coverage; had we scanned the entire rounded end
of the squash, we would have covered the entire hemisphere well. The reconstructed
curves in the incidence-plane plots (Figure 7, second column) show that the dataset as a
whole defines a smooth function that describes an interesting and plausible BRDF, with
an off-specular forward scattering lobe but also a non-Lambertian base color. The data
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Fig. 4. A typical measurement image from the
gray cylinder dataset.

Geometry
for BRDF
extraction

Fig. 5. A typical measurement image from the
squash dataset.
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Fig. 6. Summary of results from 29 images of the gray cylinder. Points: raw measurements
including reciprocal data. Solid line: local polynomial fit. Dashed line: gonioreflectometer
results.

9



30˚

0

0.2

0.4

0˚

0

0.2

60˚

0

0.5

1

80 40 0 40 80

75˚

0

2

Fig. 7. Summary of results for the squash dataset. Left column: sample coverage; right column:
raw data and local polynomial fit.

contain considerably more noise than do the gray cylinder data, as might be expected
given the irregular nature of the surface, the noise in the 3D scanner data, and the finite
precision of aligning the scanner data with the images. The slight surface blemishes
visible in Figure 5 will affect the scatter plots, but have much less influence on the
smoothed BRDF, as they cover only a small fraction of the surface.

6.3 Renderings

Plate 1 (see Appendix) shows some visual results of our reflectance measurements. To
condense the data for tractable rendering times, the measurements were approximated
with the representation presented by Lafortune et al. [16], using three cosine lobes
(besides the diffuse term) for each BRDF.4 Of course, the same data could be used in
more sophisticated representations or for studies of surface optics and development of
new parametric models.

The scene is rendered with Monte Carlo path tracing. It is illuminated by one over-
head light source and two smaller light sources in the background, one on each side of
the scene. All object surfaces show reflectances measured by our method: gray primer

4Because local polynomial reconstruction is slow and difficult to use for stochastic sampling, we did not
use it for the renderings.
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Fig. 8. Measurement setup.

on the floor, an unglazed ceramic on the flowerpot, blue and metallic red paints on the
puzzle, and black felt on the hat. Even those surfaces that seem Lambertian in this
image display distinctive directional behavior; the floor, for example, shows no visible
shadows from the back lights in a Lambertian approximation.

6.4 Human skin

We adapted our method to measure the skin of human subjects. To our knowledge, our
measurements are only the second angle-resolved reflectance measurements of living
human skin; Cader and Jankowski have used a gonioreflectometer-like device to mea-
sure UV reflectance [2]. Our method, however, obtains many more BRDF samples in a
short time (typically 20 minutes).

To accommodate a human subject, we attached our sample targets to a baseball cap
worn backward by the subject. This fixes a field of targets to the subject’s head; the
geometry of the targets and the head together is obtained, as before, with the 3D range
scanner. We selected a section of the forehead for derendering because it presents a
relatively smooth, convex, uniform area of skin that is unlikely to deform during the
measurement session. The hat positions the targets so as to make it easy to capture the
forehead and all targets in each image.

Since the sample targets are no longer stationary, the stationary targets shown in
Figure 8 provide a frame of reference for the positions of the camera, the subject, and
the light source. Transforming everything into this frame for derendering allows us
to accommodate minor movement of the subject’s head without loss of measurement
accuracy.

We measured skin BRDFs from several different subjects. Figure 9 shows coverage
and incidence-plane slices of one of our data sets. Scatter is remarkably low, given the
difficulties of precise geometric alignment and extracting reliable normals from noisy
geometric data.

The BRDF itself is quite unusual; at small incidence angles it is almost Lambertian,
but at higher angles strong forward scattering emerges. Note that the scale changes
by a factor of 25 from the top row to the bottom. This scattering does not seem to
correlate with the specular direction, so it cannot be simulated with a Phong function,
nor would it be predicted by traditional rough-surface models such as those of Torrance
and Sparrow [22] or He [13]. The only predictive model that might match these data is
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Fig. 9. BRDF of typical skin, showing coverage and scatter in raw data

the Monte Carlo simulation of Hanrahan and Krueger [11]; our data could be used to
confirm or refine that method.

The renderings of Plate 2 (see Appendix) show the two extremes of our measure-
ments to date: the BRDFs of a 43-year-old Caucasian male and a 23-year-old male from
India, who exhibits not only a different skin color but also noticeably glossier skin.

7 Conclusion

This paper has described a simple technique that can measure the BRDFs of many
materials using only a digital camera and a light source. We achieve accuracy rivaling
that of a specialized gonioreflectometer but with much greater speed and resolution, and
with one twentieth the equipment cost. In addition, the technique is versatile enough
to measure living human skin. The technique is rapid because the two dimensions of
a camera image sample two angular degrees of freedom instantaneously, leaving only
one to be handled by sequential measurement. In a measurement session lasting under
half an hour, our system can acquire hundreds of thousands of samples scattered over
the full domain of an isotropic BRDF. The resulting data are internally consistent and
agree closely with independent measurements.

Our technique demands samples with homogeneous BRDF, as do most traditional
gonioreflectometers and almost all image-based techniques. We also require convex
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curved samples; this complements the capabilities of more conventional methods, which
only work with flat samples. Just as some materials are most readily available as flat
samples (e.g. various building materials), others, including most organic objects, are
only available in curved samples.
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Plate 1. A rendered image showing a scene containing objects made of the
measured materials.

Plate 2. Rendered images showing BRDFs measured from two different subjects.
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Abstract

The reflection of light from surfaces is a fundamental problem in
computer graphics. Although many reflection models have been
proposed, few take into account the wave nature of light. In this
paper, we derive a new class of reflection models for metallic sur-
faces that handle the effects of diffraction. Diffraction is a purely
wave-like phenomenon and cannot be properly modeled using the
ray theory of light alone. A common example of a surface which ex-
hibits diffraction is the compact disk. A characteristic of such sur-
faces is that they reflect light in a very colorful manner. Our model
is also a generalization of most reflection models encountered in
computer graphics. In particular, we extend the He-Torrance model
to handle anisotropic reflections. This is achieved by rederiving,
in a more general setting, results from surface wave physics which
were taken for granted by other researchers. Specifically, our use
of Fourier analysis has enabled us to tackle the difficult task of an-
alytically computing the Kirchhoff integral of surface scattering.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture J.2
[Physical Sciences and Engineering]: Physics

Keywords: shading models, diffraction, Fourier transform, Kirch-
hoff theory, rough surface scattering, random processes

1 Introduction

The modeling of the interaction of light with surfaces is one of the
main goals of computer graphics. Over the last thirty years many
reflection models have been proposed that have considerably im-
proved the quality of computer graphics imagery. Almost all of
these reflection models are either empirical or based on the ray the-
ory of light. Surprisingly little attention has been devoted to the
purely wave-like character of light. It is well known from physical
optics that ray theory is only an approximation of the more funda-
mental wave theory. Why then has wave theory been so neglected ?
The main reason is that the ray theory is sufficient to visually cap-
ture the reflected field from many commonly occurring surfaces.
This observation is usually true when the surface detail is much
larger than the wavelength of visible light (roughly0:5 microns
(10�6 meters)). Another reason for this neglect is the common
belief that models based on wave theory are computationally too

�Alias wavefront, 1218 Third Ave, 8th Floor, Seattle, WA 98101, U.S.A.
jstam@aw.sgi.com

expensive to be of any use in computer graphics. In this paper we
challenge this point of view by introducing a new class of analytical
reflection models which simulate the effects ofdiffraction. Diffrac-
tion is a purely wave-like phenomenon which cannot be modeled
using the standard ray theory of light. Diffraction occurs when the
surface detail is comparable to the wavelength of light. A common
example of a surface that produces visible diffraction patterns is the
compact disk (CD). By rotating a CD under a steady light source,
one can fully appreciate the visual complexity of diffraction. To
capture these subtle changes in color and intensity requires a wave-
like description of light. In this paper we derive analytical reflection
models based on the wave theory that capture the effects of diffrac-
tion. In addition, our model is both easy to implement as a standard
“shader” and computationally efficient. The derivation which leads
to our new model, however, is not simple. This is because the wave
theory is mathematically much more complex than the ray theory
of light.

Scanning through the computer graphics literature, we found
only a few references which explicitly use the wave description
of light. In 1981 Moravec proposed solving the global illumina-
tion problem using the wave theory of light [11]. For his method
to give acceptable results, both a very fine resolution (on the order
of the wavelength of light) and a large ensemble of simulations (to
model incoherent natural light sources) are required. This makes his
approach unsuitable for practical computer graphics applications.
Later in 1985, Kajiya proposed to numerically solve the Kirchhoff
integral1 to simulate the light reflected from anisotropic surfaces
[9]. His approach, although less ambitious than Moravec’s, suffers
from the same limitations. In this context it would appear to be
more promising to solve directly for the coherence functions asso-
ciated with the waves, which are second order statistical averages
of the wave fields. Some work in this area has been pursued by Tan-
nenbaum et al. [20]. The coherence functions can also be employed
to define generalized radiances [23].

A more practical use of the wave theory in computer graphics is
to employ it to derive analytical reflection models. This approach,
which has a long history in the applied optics literature, e.g., [2],
was first seriously introduced to computer graphics by Bahar and
Chakrabarti [1]. Using Bahar’s full wave theory, they were able to
fit analytical distributions to their computations for surfaces having
a large isotropic surface roughness. The full wave theory has the
advantage over the Kirchhoff theory in that it takes into account the
global shape of the object. However, in practice analytical expres-
sions are known only for simple objects such as spheres. Also the
global shapes of surfaces in computer graphical models are usu-
ally much larger than the wavelength of light. Later in 1991, He
and collaborators derived a general reflection model based on the
electro-magnetic wave theory to predict the reflection of light from
isotropic surfaces of any surface roughness [8]. At about the same
time, a very similar model was proposed in the computer vision
literature by Nayar [13]. As in Kajiya’s work, these two models
are essentially based on the Kirchhoff approximation of surface re-
flection [2]. We also note that Blinn already used some asymptotic
results from Beckmann’s monograph [3]. However, Blinn’s model
does not account for wave-like effects.

1This integral will be defined more precisely below.
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Figure 1: Close-up “view” of the micro-geometry of the surface of
a compact disk.

Although the analytical models just discussed are based on wave
theory, none of them is able to capture the visual complexity of the
light reflected off of a compact disk, for example. The main reason
is that these models assume the surface detail to be isotropic, i.e.,
the surface “looks the same” in every direction. Interesting diffrac-
tion phenomena, however, occur mostly when the surface detail is
highly anisotropic, viz. non-isotropic. Fig. 1 shows that this is
certainly the case for the CD. Other examples include brushed met-
als and colorful diffraction gratings. In computer graphics, both
empirical and ray optics models have been proposed to model the
reflection from anisotropic surfaces [15, 17, 22]. However, since
these models are not based on wave theory, they failed to capture
the effects of diffraction. To the best of our knowledge, reflection
models that handle colorful diffraction effects have not appeared
in the computer graphics literature or in any commercially avail-
able graphics software before. The phenomenon of diffraction was
used, however, by Nakamae et al. to model the fringes caused when
viewing bright light sources through the pupil and eyelashes [12].

In this paper, we derive various analytical anisotropic reflection
models using the scalar Kirchhoff wave theory and the theory of
random processes. In particular, we show that the reflected intensity
is equal to the spectral density of a simple functionp = ei�h of the
(random) surface heighth. We show that the spectral density can
be computed for a large class of surfaces not considered in previous
models. We believe that our approach is novel, since the “classic”
monographs on scattering from statistical surfaces do not mention
such an approach [2, 14].

Diffraction should not be confused with the related phenomenon
of interference. Interference produces colorful effects due to the
phase differences caused by a wave traversing thin media of dif-
ferent indices of refraction, e.g., a soap bubble. Interference ef-
fects, unlike diffraction, can be modeled using the ray theory of
light alone [7].

To fully understand the derivations in this paper the reader should
have a background in Fourier analysis, distribution theory and ran-
dom processes. Due to a lack of space we refer the reader not
versed in these areas to the relevant literature, e.g., [16, 24]. The
reader might also want to consult the longer version of this paper
available on the CDROM proceedings which contains appendices
summarizing the main results from these disciplines. The remain-
der of this paper is organized as follows. A reader who is interested
solely in implementing our new shaders can go directly to Section
6 where the model is stated “as is”. Section 2 summarizes the main
results from wave theory which are required in this paper. Section 3
presents our derivation. Subsequently, Sections 4 and 5 present sev-
eral applications of our new reflection model. Section 6 addresses
implementation issues and can be read without any advanced math-
ematical knowledge. Section 7 discusses several results created us-
ing our new shaders. Finally, Section 8 concludes, outlining possi-
ble directions for future research.
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Figure 2: Basic geometry of the surface wave reflection problem.

2 Wave Theory and Computer Graphics

In this section we briefly outline some results and concepts from
the wave theory necessary to understanding the derivation of our
reflection model. We employ the so-called “scalar wave theory of
diffraction” [4]. In this approximation the light wave is assumed to
be a complex valued scalar disturbance . This theory completely
ignores the polarization of light, so its results are therefore restricted
to unpolarized light. Fortunately, most common light sources such
as the sun and light bulbs are totally unpolarized. The waves gen-
erated by these sources also have the property that they fluctuate
very rapidly over time. Typical frequencies for such waves are on
the order of1014 s�1. In practice this means that we cannot take
accurate “snapshots” of a wave. Light waves are thus essentially
random and only statistical averages of the wave function have any
physical significance. The averaging, denoted byh:i, can be inter-
preted either as an average over a long time period or equivalently
(via ergodicity) as an ensemble average. An example of a statistical
quantity associated with waves is theirradiance, I = hj j2i.

We also assume that the waves emanating from the source are
stationary. This means that the wave is a superposition of inde-
pendent monochromatic waves. Consequently, we can restrict our
analysis to a wave having a definite wavelength� associated with
it. For visible light, the wavelengths range from the ultraviolet (0:3
microns) to the infrared (0:8 microns) region. Each of these waves
satisfies a Helmholtz’s wave equation:

r2 + k2 = 0;

wherek is the wavenumberequal to the reciprocal of the wave-
length,k = 2�=�.

The main task in the theory of diffraction is to solve this wave
equation for different geometries. In our case we are interested in
computing the reflected waves from various types of surfaces. More
precisely, we want to compute the wave 2 equal to the reflection
of an incoming planar monochromatic wave 1 = eikk̂1�x traveling
in the directionk̂1 from a surfaceS. Fig. 2 illustrates this situa-
tion. The equation relating the reflected field to the incoming field
is known as theKirchhoff integral. This equation is a formalization
of Huygen’s well-known principle that states that if one knows the
wavefront at a given moment, the wave at a later time can be de-
duced by considering each point on the first wave as the source of
a new disturbance. This principle implies that once the field on the
surface is known, the field everywhere else away from the surface
can be computed. The field on the surface is usually related to the
incoming field 1 using thetangent planeapproximation. For a
planar surface, the wave theory predicts that a fractionF of the in-
coming light is specularly reflected. The fractionF is equal to the
Fresnel factor for unpolarized light (see p. 48 of [4]). The tangent
approximation states that the wave field on the surface is equal to
the incoming field plus the field reflected off of the tangent plane
at the surface point. Using this relation and the assumption that the
“observation point” is sufficiently far removed from the surface, the
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Kirchhoff integral is ([2], p. 22):

 2 =
ikeikR

4�R
(Fv � p) �

Z
S

n̂ eikv�s ds; (1)

whereR is the distance from the center of the patch to the receiving
pointxp, n̂ is the normal of the surface ats and the vectors

v = k̂1 � k̂2 and p = k̂1 + k̂2:

The vectork̂2 is equal to the unit vector pointing from the origin
of the surface towards the pointxp. To obtain this result it is also
assumed that the Fresnel coefficientF is replaced by its average
value over the normal distribution of the surface and can thus be
taken out of the integral. Eq. 1 is the starting point for our deriva-
tion. We will show below that it can be evaluated analytically for a
large class of interesting surface profiles. Before we do so, we will
also outline how the reflected wave is related to the usual reflection
nomenclature used in computer graphics.

In computer graphics, the reflected properties are often mod-
eled using the bidirectional reflection distribution function (BRDF)
which is defined as the ratio of the reflected radiance to the incom-
ing irradiance. In this paper we will provide in every case the BRDF
corresponding to our reflection model. The relationship between
the BRDF and the waves can be shown to be [21]:

BRDF = lim
R!1

R2

A cos �1

hj 2j
2i

hj 1j2i cos �2
; (2)

whereA is the area of the surface and�1 and�2 are the angles that
the vectorŝk1 andk̂2 make with the vertical direction (see Fig. 2).

3 Derivation

In this section we demonstrate that the Kirchhoff integral of Eq. 1
can be computed analytically. In this paper, as in related work, we
restrict ourselves to the reflection of waves from height fields. We
assume that the surface is defined as an elevation over the(x; y)
plane. Each surface point is then parameterized by the equation

s! s(x; y) = (x; y; h(x; y)); (3)

whereh(x; y) is a (random) function. The normal to the surface
at each point then admits an analytical expression in terms of the
partial derivativeshx andhy of the height function:

n̂ ds! n̂(x; y) ds = (�hx(x; y);�hy(x; y); 1) dxdy:

Introducing the notationv = (u; v; w), it then follows directly that
the integral in Eq. 1 acquires the following form:

I(ku; kv) =

Z Z
(�hx;�hy; 1) e

ikwheik(ux+vy) dxdy: (4)

The integrand can be further simplified by noting that:

(�hx;�hy; 1)e
ikwh =

1

ikw
(�px;�py; ikwp);

where
p(x; y) = eikwh(x;y): (5)

We now use the common assumption (e.g., [2, 8]) that the in-
tegration can be extended over the entire plane. This assumption
is usually justified on the grounds that the surface detail is much
smaller than the distances over which the surface is viewed. In

doing so we observe that the integral of Eq. 4 is now a two-
dimensional Fourier transform:

I(ku; kv) =

Z Z
1

ikw
(�px;�py; ikwp)e

ik(ux+vy)dxdy:

This important observation can be implemented. LetP (ku; kv) be
the Fourier transform of the functionp. We observe that differenti-
ation with respect tox (resp.y) in the Fourier domain is equivalent
to a multiplication of the Fourier transform by�iku (resp.�ikv).
This leads to the simple relationship

I(ku; kv) =
1

w
P (ku; kv) v:

We have thus related the integral of Eq. 1 directly to the Fourier
transform of the functionp. Now, since

(Fv� p) � v = 2F (1� k̂1 � k̂2);

the scattered wave of Eq. 1 is equal to

 2 =
ikeikR

2�R

F (1� k̂1 � k̂2)

w
P (ku; kv): (6)

This result shows that the scattered wave field is proportional to
the Fourier transform of a simple function of the surface height.
Consequently, from Eq. 2, it follows that the BRDF is

BRDF =
k2F 2G

4�2Aw2
hjP (ku; kv)j2i; (7)

where

G =
(1� k̂1 � k̂2)

2

cos �1 cos �2
: (8)

This result and the derivation that leads to it are remarkably simple
when compared to derivations that do not employ the Fourier trans-
form, e.g., [2]. More importantly, this treatment is more general,
since we have not made any assumptions regarding the functionP
yet.

We now specialize our results for a homogeneous random func-
tion [16]. Homogeneity is a natural assumption since we are in-
terested in the bulk reflection from a large portion of the surface
having a certain profile. For example, the portion of the CD de-
picted in Fig. 1 could have been taken from any part of the CD.
However, and this is important, we do not assume that the surface
is isotropic. This is mainly where we depart from previous wave
physics models in computer graphics. Referring again to Fig. 1 we
observe that the CD is clearly not isotropic.

From the definition of the functionp (Eq. 5) it follows imme-
diately that this function is also homogeneous. In particular, its
correlation function depends only on the separation between two
locations:

Cp(x
0; y0) = hp�(x; y)p(x+ x0; y + y0)i � jhpij2;

independently of the location(x; y). The Fourier transform of the
correlation function is known as thespectral density([16], p. 338):

Sp(u; v) =

Z Z
Cp(x

0; y0)ei(ux
0+vy0)dx0dy0:

The spectral density is a non-negative function which gives the
relative contribution of each wavenumber(u; v) to the entire en-
ergy. We now show that the average in Eq. 7 is directly related
to the spectral density. Indeed, let� = (x; y), �0 = (x0; y0) and
� = (ku; kv), then

hjP (�)j2i = hP �(�)P (�)i =

ZZ
hp�(�)p(�)ie�i���ei���d�d�:
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       (a)                  (b)                (c)                 (d)
Figure 3: Effect of the correlation function on the appearance of
a random surface. The pictures at the top show plots of different
correlation functions with a realization of the corresponding ran-
dom surface below. The surface types are: (a) isotropic Gaussian,
(b) anisotropic Gaussian, (c) isotropic fractal and (d) anisotropic
fractal.

With the change of variable� = � + �0, this integral becomesZZ
hp�(�)p(� + �0)iei���

0

d�d�0 =Z
d�

Z
(Cp(�

0) + jhpij2)ei���
0

d�0 = A (Sp(�) + 4�2�(�));

where� is the two-dimensional Dirac delta function. Consequently,
the average in Eq. 7 is a function of the spectral density of the
functionp:

1

A
hjP (ku; kv)j2i = Sp(ku; kv) + 4�2jhpij2�(ku; kv):

Substituting this result back into Eq. 7 we get:

BRDF =
F 2G

w2

�
k2

4�2
Sp(ku; kv) + jhpij2�(u; v)

�
; (9)

where we have used the fact that�(ku; kv) = �(u; v)=k2 [24].
Eq. 9 is the main theoretical result of this paper. It shows that
the reflection from a random surface is proportional to the spectral
density of the random functioneikwh. In the next two sections we
apply this result to the derivation of reflection models for various
types of surfaces.

4 Anisotropic Rough Surfaces

4.1 General Case

Every surface depicted in Fig. 3 is a realization of aGaussian ran-
dom process. These processes are entirely defined by their corre-
sponding correlation function depicted in the upper part of Fig. 3.
From the figure it is clear that the correlation function determines
the general appearance of the random surface. Radially symmetri-
cal correlation functions correspond to isotropic surfaces, c.f., sur-
faces (a) and (c), while the derivative of the correlation function
at the origin also determines smoothness of the surfaces. Conse-
quently, surfaces (a) and (b) are smooth, while surfaces (c) and (d)
have a fractal appearance. In this section we further clarify the
fact that the reflection from these surfaces is intimately related to
the correlation function. Gaussian random processes have the nice
property that their characteristic functions admit analytical expres-
sions [2]. These functions are exactly what we require in order to
compute the spectral densitySp and the variancejhpij2 appearing
in Eq. 9. Indeed, for Gaussian random processes these quantities

are related to their surface height counterparts as follows. Firstly,
we have the following identities ([16], p. 255):

hpi = heikwhi = e�g=2 and (10)

Cp(x; y) = e�g
�
egCh(x;y) � 1

�
; (11)

whereg = (kw�h)
2, and�h is the standard deviation of the height

fluctuations. Secondly, the spectral densitySp is the Fourier trans-
form of the correlation functionCp ([16], p. 338). To compute
this Fourier transform analytically we can use the expansion of the
exponential function into an infinite series [2]:

egCh(x;y) =

1X
m=0

gm

m!
Ch(x; y)

m:

Then using the linearity of the Fourier transform, we can compute
the spectral density as

Sp = FfCpg = e�g
1X

m=1

gm

m!
Ff(Ch)

mg: (12)

This requires the computation of the Fourier transform of the sur-
face correlation to a powerm. We now give analytical results for
the two correlation functions corresponding to the surfaces depicted
in Fig. 3. These surfaces are defined by the following two correla-
tion functions:

C1(x; y) = e
�
x2

T2x

�
y2

T2y and C2(x; y) = e
�

q
x2

T2x

+
y2

T2y :

In all cases, thecorrelation lengthsTx and Ty control the
anisotropy of the surface. Fig. 3.(a) and (b) both correspond to
the correlation functionC1. This function is infinitely smooth at
the origin, which accounts for the smoothness of the corresponding
surfaces. In Fig. 3.(a)Tx = Ty and the surfaces are isotropic.
Most previous wave-based models considered only the isotropic
case. Fig. 3.(c) and (d) correspond to the correlation functionC2.
The corresponding surfaces have a fractal appearance. They are
thus good models for very rough materials. In the results section
we will see that these surfaces give rise to reflection patterns which
are visually different from the smooth case.

For each correlation function, we can compute its Fourier trans-
forms to a powerm analytically. They are equal to

Dm
1 =

�TxTy
m

e�
U2+V 2

4m and Dm
2 =

2�TxTym

(m2 + U2 + V 2)3=2
;

(13)
respectively, whereU = kuTx andV = kvTy. By substituting
these expressions back into the infinite sum of Eq. 12, we get an
analytical expression for the BRDF:

BRDF =
F 2G

w2
e�g

 
k2

4�2

1X
m=1

gm

m!
Dm + �(u; v)

!
; (14)

whereDm is any one of the functions of Eq. 13.

4.2 Discussion

In this section we demonstrate that most previous models in com-
puter graphics are special cases of our new shading model.
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Figure 4: Plots of the BRDF fork ranging from the infrared
(8:06��1) to the ultraviolet region (16:53��1). The reflection is
in the specular direction:�1 = �2 = 45o. The plots show the ef-
fect of the standard deviation�h on the color of the reflection. For
low deviations the reflection is bluish, while for higher roughness
it tends to flatten out. The dashed line is the geometrical optics
approximation.

Born Approximation

Wheng << 1, the infinite sum appearing in Eq. 12 can be trun-
cated to its first term. This is equivalent to the approximation
eikwh � 1 + ikwh often taken in physical theories. This approxi-
mation should be valid whenever the scales of the surfaces are much
smaller than the wavelength of light.

BRDFBorn = F 2G e�g
�
�2hk

4

4�2
Sh(ku; kv) + �(u; v)

�
:

This result is described in theHandbook of Optics[5]. Notice
that the BRDF is dependent on the fourth power of the inverse of
the wavelength. This means that generally “bluish” light is more
strongly scattered than “reddish” light. These surfaces should there-
fore have a bluish appearance. An interesting feature of this ap-
proximation is that one can actually “see” the spectral density of
the random surface in its highlight, i.e., any of the plots in Fig. 3
(top).

Geometrical Optics

In the opposite limit wheng >> 1, an approximate expression
for the sum of Eq. 12 can also be derived. This case corresponds
to a situation usually encountered in computer graphics when the
surface detail is much larger than the wavelength of light. For large
g, the Fourier integral only depends on the behavior of the function
egCh near the origin (see [2, 1] for details):

egCh(x;y) � ege�g(x
2=T2x+y

2=T2y ):

The Fourier transform of this function can be computed analytically
and is equal to:

Sp(ku; kv) =
�TxTy
g

e�
U2

4g e�
V 2

4g :

The BRDF in this case is equal to (e�g � 0):

BRDFgeom =
F 2G

4�w4rxry
e
�

u2

4w2r2x e
�

v2

4w2r2y ; (15)

whererx = �h=Tx andry = �h=Ty. This distribution is a gener-
alization of the isotropic distributions found in the Blinn and Cook-
Torrance models where there is only one roughness parameter “m”.
In fact, our model closely resembles Ward’s anisotropic reflection
model [22]. As in the Cook-Torrance model,BRDFgeom is only
dependent on the wavelength of light through the Fresnel factorF ,
as there is no other explicit dependence on wavelength:k does not
explicitly appear in the distribution.

rect(x) rect(y) g(x) g(x) rect(x) rect(y)
Figure 5: Each bump is defined as the multiplication of a function
g(x; y) with the product of box-like functions.

Figure 6: Two different bump functions: (1) constant, (2) linear in
one coordinate.

Isotropic Distributions

The He-Torrance [8] and the Nayar [13] reflection models are ob-
tained when our model is restricted to the class of isotropic sur-
faces corresponding to Fig. 3.(a). Using our result for the corre-
lation functionC1 with Tx = Ty, we essentially recover both of
these models. It is worth noting that one of the versions of the
He-Torrance model handles polarization effects while our model
doesn’t. This is because they used the vector valued version of
the Kirchhoff integral. However, in practice it seems He-Torrance
have only used their unpolarized version to create the pictures ac-
companying their paper. The dependence on wavelength (as in
our model) is a function of the Fresnel factorF and the function
k2 Sp(ku; kv). In Fig. 4 we illustrate the dependence of this func-
tion on wavenumberk for different surface deviations�h. The re-
flection goes from ak2 dependence to a flat spectrum. Notice that
in the midrange we actually get a small yellowish hue. The figure
also demonstrates that for�h > 0:5 the geometrical optics model,
shown as a dashed line, is a very good approximation. In practice
we have found that wheneverg > 10 the pictures generated with
the geometrical optics approximation are visually indistinguishable
from pictures generated using the exact model.

5 Diffraction from Periodic-like Surfaces

We now turn to an application that most clearly demonstrates the
power of our new reflection model.

Many surfaces have a micro-structure that is made out of simi-
lar “bumps”. A good example is a compact disk which has small
bumps that encode the information distributed over each “track”.
Fig. 1 is a magnified view of the actual surface of a compact disk.
Notice in particular that the distribution of bumps is random along
each track but that the tracks are evenly spaced. In this section we
derive general formulae for certain shapes of bumps, and then spe-
cialize the results for a CD-shader.

symbol description size
h0 height of a bump 0.15�m
a width of a bump 0.5�m
b length of a bump 1 �m
�x separation between the tracks 2.5�m
�y density of bumps on each track0.5 (�m)�1

Table 1: Typical dimensions of a compact disk.

105



We assume that the surface is given by a superposition of bumps:

h(x; y) =

1X
n=�1

1X
m=�1

b(x� xn; y � ym); (16)

where the locations(xn; ym) are assumed to be either regularly
spaced or randomly (Poisson) distributed. To handle the two cases
simultaneously, we assume thatxn is evenly spaced and thatyn is
Poisson distributed. Extensions to the case where both locations
are evenly spaced or where both are Poisson distributed should be
obvious from our results. Let�x be the constant spacing between
thex-locations:xn = n�x. The random Poisson distribution of
the locationsym is entirely specified by a density�y of bumps per
unit length. The functionb(x; y) appearing in Eq. 16 is a “bump
function”: a function with (small) finite support. We will assume
that the bump function has the following simple form:

b(x; y) = h0 g(x=a)rect(x=a)rect(y=b); (17)

wherea, b andh0 define the width, length and height of each bump
respectively (a � �x). Typical values of these parameters for a CD
are provided in Table 1. The functionrect equals one on the interval
[�1=2; 1=2] and zero elsewhere. Fig. 5 illustrates our definition of
a bump. Our derivation is valid for arbitraryg, however, we provide
an analytical expression only for the following two functions:

g0(x) = 1 and g1(x) = 1=2 + x: (18)

The bumps corresponding to these functions are depicted in Fig. 6.
The functiong0 is a good approximation of the bumps found on a
CD and the functiong1 can be used to model diffraction gratings.

The functionp(x; y) defined by Eq. 5 in our case is equal to:

p(x; y) =

1X
n=�1

1X
m=�1

�((x� xn)=a; (y � ym)=b); (19)

where�(x; y) = ei�g(x)rect(x)rect(y) and � = kwh0. We
dropped a constant term “1” that accounts for the space between
the bumps and only adds a delta spike in the specular direction.

A simple computation shows that the Fourier transform of the
functionp(x; y) is equal to

P (u; v) = �x(u)�y(v) ab �(au; bv);

where�(u; v) is the Fourier transform of�(x; y) and

�x(u) =

1X
n=�1

eiun�x and �y(v) =

1X
m=�1

eivym : (20)

To compute the spectral density of Eq. 9 we note that:

Sp(u; v) = (ab)2j�(au; bv)j j�x(u)j
2 S�y (v):

The spectral density and the average of the sum of random Poisson
distributed locations are both equal to the density�y (see [16] p.
561):

S�y (v) = �y and h�yi = �y:

The sum of evenly spaced locationxn is a bit harder to deal with.
First we need the following two results from the theory of distribu-
tions (see pp. 54-55 of reference [24]):

1X
n=�1

eiun = 2�

1X
n=�1

�(u�2�n) and �(sz+t) =
1

s
�(z+t=s);

wheres > 0 andt are real numbers. The first of these two equalities
is known as “Poisson’s summation formula”. Using these results we
can express the square of the sum�x in terms of delta distributions
only:

j�x(u)j
2 =

(2�)2

�x2

1X
n=�1

�(u� 2�n=�x):

We can now compute the spectral densitySp by putting all these
computations together:

Sp(ku; kv) = b2�y�

1X
n=�1

j�n(kv)j
2�(u� n�=�x); (21)

where

j�n(kv)j
2 =

a2

�x2
j�(2�na=�x; kv)j2: (22)

The functionj�j2 can be computed analytically for the two bumps
depicted in Fig. 6:

j�0(au; bv)j2 = 2(1� cos(�))sinc2(au=2)sinc2(bv=2);(23)

j�1(au; bv)j2 =
�
sinc2(�0=2)� 2sinc(�0=2)�

sinc(au=2) cos(�=2) + sinc2(au=2)
�
sinc2(bv=2); (24)

where�0 = � + au. Putting all these pieces together we get the
following expression for the BRDF:

BRDF =
F 2G

w2
b2�y

1X
n=�1

j�n(kv)j
2�(u�n�=�x)(k+�y�(u)):

6 Implementation

We have implemented our reflection models as various shaders in
our MAYA animation system. Any model created in that package
can be rendered using our new shaders. The fact that our shaders
have been included in a commercial product should be a sufficient
proof of their practicality.

As in [9], we model the anisotropy of the surface by assigning
an orthonormal frame at each point of the surface. In the case of
a parametric surface, the most natural choice for this frame is to
take the normal and the two vectors tangent to the iso-parameter
lines. We have also added an additional rotation angle to the frame
around the normal. When this angle is texture mapped, it allows us
to create effects such as brushed metal (Fig. 8.(a)).

The general form of our shader is

BRDF = jF (�01)j
2 G(k1;k2) S(k1;k2) (D(v; �) + rEnv) ;

whereF is the Fresnel factor [6],S is a shadowing function [8],
G is a geometrical factor defined by Eq. 8 in Section 3 andD
is a distribution function that is related to the micro-geometry of
the surface. The function “Env” returns the color in the mirror di-
rection ofk2 from an environment map and the factorr accounts
for how much the surface reflects direct illumination. The vector
v = (u; v; w) is the angle midway between�k1 andk2. The Fres-
nel factor is evaluated at the angle�01 that the directionk1 makes
with the vectorv. The Fresnel factor varies with the index of refrac-
tion of the metallic surface and is wavelength dependent [6]. We do
not use the He-Torrance shadowing function since it is restricted
to isotropic surfaces. Instead, we employ a model introduced by
Sancer [18]. For convenience, we have included this model in Ap-
pendix A. The distributionD is the most important component of
our model and is now described in more detail.
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In the previous sections we have derived distribution functions
for both the random surfaces depicted in Fig. 3 and for periodic-like
profiles such as the one shown in Fig. 1. When the surface is ran-
dom, the distribution is defined by the three parameters�h, Tx and
Ty. The variance�2h models the average height fluctuations of the
surface and the parametersTx andTy model the amount of corre-
lation of the micro-surface in the directions of the local frame. See
Section 3 for further details on these quantities. WhenTx = Ty, the
surface is isotropic. In the most general case, the distributionD is
computed by the infinite sum appearing in Eq. 14. In Appendix B,
we provide a stable implementation of this sum. As pointed out in
Section 4.2, the sum is very well approximated by the geometrical
optics approximation of Eq. 15, wheng = (kw�h)

2 is large (see
also Fig. 4). The factor “r” is equal toexp(�g). The smoother the
surface, the more indirect illumination is directly reflected off of it.

The implementation of periodic-like profiles giving rise to col-
orful diffraction patterns is different. When evaluating the distri-
butionD, the valuesu and v (andw) are determined by the in-
coming and outgoing angles. The incoming light is usually as-
sumed to be an incoherent sum of many monochromatic waves
whose number is proportional to the distributionL(�) of the light
source. To determine the intensity and the color of the light re-
flected in the outgoing direction, we first compute the wavelengths
�n for which L(�) is non zero and for which the delta spikes in
Eq. 21 are non-zero. This only occurs when�n = �xu=n and
n 6= 0. Whenn = 0, all wavelengths contribute intensities in
the specular directionu = 0. In general, visible light is com-
prised only of waves with wavelengths between�min = 0:4�m
and�max = 0:7�m. This means that the indicesn are constrained
to lie in the range�xu[1=�max; 1=�min] if u > 0 and in the range
�xu[1=�min; 1=�max] whenu < 0. Once these wavelengths are
determined, the red, green and blue components of the distribution
D are computed as follows

Drgb = b2�y

NmaxX
n=Nmin

1

�n
Specrgb(�n)L(�n)

����n

�
2�v

�n

����2 ;
whereSpecrgb is a function that for each wavelength returns the
corresponding color. This function can either be constructed from
psychophysical experiments or simply set by an animator as a
“ramp”. In our implementation we constructed a ramp function
from standard RGB response curves. See Eq. 22 for a definition of
the function�n.

7 Results

Once the shaders were implemented in MAYA, it was an easy task
to generate results demonstrating the power of our new shading
model. In Fig. 7 we show the effect of some of the parameters
of our model on the appearance of the surfaces. In each render-
ing we chose to have a spectrally flat Fresnel factor to demonstrate
the dependence of the distribution on wavelength. For the Gaus-
sian correlations the reflection is more bluish for small roughness
and becomes whiter for larger roughness, in accordance with the
analysis of Section 4.2. The reflection from fractal surfaces is quite
interesting: bluish for small roughness, then yellowish for interme-
diate roughness and finally white for large roughness. The third
row of spheres exhibits the effect of the separation and twist angle
parameters of our diffraction shader. We used a different texture
map for the twist angle of each one of the three “diffraction cones”
at the bottom of Fig. 7.

Fig. 8 shows several renderings created in this manner. In each
case we have texture mapped the directions of anisotropy to add
more interesting visual detail. Fig. 8.(a) demonstrates that this can
be employed to create a “brushed metal” look. In Fig. 8.(b) we

textured both the roughness and the degree of anisotropy of the sur-
face. Fig. 8.(c) is a picture of a CD illuminated by a directional
light source. Notice that all the highlights appear automatically in
the correct places when the data from Table 1 is used. Fig. 8.(d) is
an example of the use of our diffraction grating model. Notice all
the subtle coloring effects that result (especially when viewing the
corresponding animation). These colorful effects would be hard to
model by trial and error without properly modeling the wave prop-
erties of light.

The effects of the anisotropy and of diffraction are most pro-
nounced in an animation when moving either the object or the light
sources. For this reason we have included some animations on the
CDROM proceedings.

8 Conclusions

In this paper we have proposed a new class of reflection models
that take into account the wave-like properties of light. For the first
time in computer graphics, we have derived reflection models that
properly simulate the effects of diffraction. We have shown that
our models can be easily implemented as standard shaders in our
MAYA animation software. Our derivations, while mathematically
involved, are simpler and more general than previously published
results in this area. In particular, our use of the Fourier transform
has proven to be a very powerful tool in deriving new reflection
models.

In future work, we hope to extend our model to an even wider
class of surfaces by relaxing some of the assumptions in our model.
Presently, our model only accounts for the reflection from metallic
surfaces and ignores multiple-scattering. It would be interesting
to derive more general models that take into account subsurface
scattering by waves. It seems unlikely that the effects of multiple
scattering might be captured by an analytical model. An alternative
would be to fit analytical models to either the results from a Monte-
Carlo wave simulation or to experimentally measured data.

As well, we wish to extend our work to the computation of the
fluctuations of the intensity field [10]. In this manner we can com-
pute exact texture maps for given surface profiles. We could achieve
this by deriving analytical expressions for the higher order statistics
of the reflected intensity field. More specifically, we hope to ex-
tend our previous work on stochastic rendering of density fields to
surfaces [19].
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A A Shadowing Function

The shadowing function used in He’s model applies only to
isotropic surfaces. For this reason we have used a different model
derived by Sancer [18]. The shadowing function is valid for a Gaus-
sian random surface having a correlation functionCh and standard
deviation�h:

S =

8<
:

(C1 + 1)�1 if u = v = 0 and �1 � �2
(C2 + 1)�1 if u = v = 0 and �2 � �1

(C1 + C2 + 1)�1 else

;
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where

Ci =

r
2j�ij

�
tan �i exp

�
�
cot2 �i
2j�ij

�
� erfc

 
cot �ip
2j�ij

!

�i = �2h
�
Ch;xx cos

2 �i +Ch;xy sin 2�i + Ch;yy sin
2 �i
�
;

wherei = 1; 2 andCh;xx is the second derivative with respect tox
of the correlation function at the origin. Since the derivatives of the
correlation function depend on the correlation lengthsTx andTy,
this clearly shows that this shadowing function takes into account
the anisotropy of the surface.

B Computing Infinite Sums

The following piece of code will compute the distribution of re-
flected light from the surface:

compute D (lambda,u,v,w,s h,Tx,Ty)
k = 2*PI/lambda;
g = k*s h*w; g *= g;
if ( g>10 )

return D geom(u,v,w,s h/Tx,s h/Ty);
tmp=1; sum=log g=0;
for(m=1;abs(tmp)>EPS||m<3*g;m++) f

log g += log(g/m); tmp = exp(log g-g);
sum += tmp*D(m,k*u,k*v,Tx,Ty);

g
return lambda*lambda*sum

The functionD() is any one of the functions of Equation 13. This
routine is a stable implementation of the infinite sum appearing in
Equation 14. A naive implementation of the sum results in numer-
ical overflows. The condition “m<3*g” is there to make sure that
we do not exit the loop too early. This is an heuristic which has
worked well in practice.
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                                  Gaussian                                                                                               Fractal

 Roughness = 0.001                     0.05                              0.1                             0.001                               0.05                               0.1   

 Anisotropy = (0.3,0.3)          (1.0,0.3)                        (5.0,0.3)                        (0.3,0.3)                      (1.0,0.3)                        (5.0,0.3)  

                                  Gaussian                                                                                               Fractal

 Separation = 1.0                          2.5                               5.0                   Twist angle = 0                          30                                120

Figure 7: Effect of some of the parameters.
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(a) (b)

(c) (d)

Figure 8: More pictures.
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aÉ^�f�U%YÆV�U%b��5ü!YiU%V�fhgÆûZVHý�`�fHU�nh^A��^�nXp/^1@�ü�^Zb!VXg3��^MûZ[%aÉü�`!f�U�q
fhgÆ[%b>U%YÆYop?� - ÿ!^B8v[�[�:�q - [%nXn�U�b�ûZ^5aÉ[��!^ZYâÿ>U�Væý�^�^ZbC��^Zb!^�nXq
U�YÆgiVX^��D��[%n_U%b!giVX[�fXnh[�ü!giûEVX`!n��¨U%ûZ^ZVÑý�pàrHU�E�gopmU�F?� - ÿ�^(8v[�[�:�q- [%nXn�U%b!ûZ^�aÉ[��!^�Y!ÿ�U%V�U%YÆVX[Hý�^Z^Zb1VXgÆaÉü!Yig���^��MU�b��Ma]U��!^�U�ü!q
ü�nh[�ü�nhg U�fh^G�¨[�n�ü!n�U�û�fhgÆû�U%Y!gÆaÉü�YÆ^ZaÉ^Zb�f�U�fhgÆ[%b�V¯ý�p(H<U�n���I�U%b��
kmû�ÿ!YÆgiû�: ,!J �- ÿ!^E[�nhg3�%gÆb>U%YK%Êÿ�[%b���L�cM%�ÿ![�b �%q � YÆgÆb�b�NjU%b��9H ÿ�gofXfh^�� # J
aÉ[���^ZYÆVZcM[%b fhÿ�^ [�fhÿ�^�nçÿ>U�b��Õc1U�nh^ ^�aÉü�gonhgÆû�U%YlaÉ[��!^ZYÆV��- ÿ!^ZVX^ÉaÉ[��!^�YiVHU�nh^]b�[%fHü!ÿ�p!VXgÆû�U�YÆYÆp�ü�YiU�`�VXgÆý�YÆ^ÉVXgÆb�ûZ^Éfhÿ!^�p��[/b�[�f(��`�Y��>Yvfhÿ!^]Y U�� [���nh^ZûZgÆü!nh[�û�gÆf�péU%b��*fhÿ�^]ü!nhgÆb!ûZgÆü�YÆ^
[*��fhÿ�^]ûZ[�b!VX^�n"�%U�fhgÆ[�b-[*�_^Zb!^�n"�%p?� - ÿ�^]ü�ÿ�p�VXgÆû�U%YÆYop-ü!Y U�`�VXgoq
ý!YÆ^A5Ñnh^Zb�qs\	UZpmU�nâaÉ[���^ZY #�# û�ÿ>U�n�U�û�fh^�nhgÆVX^ZV���g�/Õ^�nh^Zb�f	a]U�fh^�q
nhgiU�YiVO��gofhÿéU%béU�ü�ü!nh[%ü!nhgiU�fh^Énh^�fXnh[�qÄnh^10>^Zû�fhg3��^lû�[�aÉü�[�b!^Zb�f�c
gÆb!ûZYÆ`��!gÆb �çûZ^�n�U%aÉgÆûZVZcP��U�YÆYiVZc��¨[�U%aÉVZcâ^�fhû���%¯U�gÆbmfh^�� ûZ[�U�fXq
gÆb ��V�U�nh^é[�� fh^ZbQ��fXfh^�� fh[Nfhÿ�^ � ^�U�n���qSR¶U*@��v^ZYÆYÉ^ZaÉü�gonhgoq
ûZU%YÆYop¶ý>U�VX^��/aÉ[��!^ZY # , � - ÿ�^j\'TXk - ��U�f�U�ý>U�VX^MU�YiVX[æU%ü!ü�YÆgÆ^ZV
fhÿ!gÆV	aÉ[��!^ZYÔfh[lnh^Zü�nh^ZVX^Zb�f�aÉ^�U�VX`!nh^ZaÉ^�bmf'��U�f�U&� 	 ^ZûZ^Zb�fhYop�c
S U*��[%nXfh`�b!^v^�f�� U�YU� # 2�ü�nh[�ü�[�VX^��jfhÿ�^�ûZ[%aMý�gÆb�U�fhgÆ[�bj[�����^Zb!^�n�U%Y
û�[�VXgÆb�^jaÉ[��!^ZYÆV�fh[][�ý!f�U�gÆb�UA��^�nhVhU�fhgÆYÆ^(�¨U%aÉgÆYop¶[�� �
	��� V��

VWYX Z�[]\?^�_a`�b�_ac�d�Z1e VgfPhifaf ` V e c!jke `�l # N�N�N1mon ^1p�q e f Z�[grsp"t.u&q c Vkv�w [gq qn ^�p�q e f Z�[g_ fyx # J�LGz ` w q [gt�{�`�c�r x�|M}�~ `�_ar |�� ; #y�"� x��i� c�l�r ,!2�L
� c�e l� jk_�[y[Uj x z c��)p�_�e r�b�[ x � h J", # ;", x�� � h m



� � ������������� � ���%���������)���"� �X�'�����a����� ���K���Ê�k�¯�!���k�������6�l������� �����3���������!� ���v�%�����k��������� ���v�m� �i��¡
� U�VX^��¶[�bàfhÿ!^�ü!nh^ZYÆgÆaÉgÆb>U�nXp¢��^�nhVXgÆ[�b/[��¯fhÿ!gÆVâü�U%ü�^�n # ;�c - [�q
ý�YÆ^�nÊ^�f�� U�Yk� # >�ü�nh[�ü�[�VX^��1UÑb!^1� �
	��� fhÿ>U�fÊgÆV�ü�U�nXfhgÆûZ`!Y U�nhYop��[�[��9��[%nâü!nh[���`�ûZgÆb �ÉU�nXfhgÆV�fhgÆûHûZ[�b�fh[�`�n�^1/Õ^Zû�fhV��� `!nhgÆb��çnh^Zb���^�nhgÆb��!câfhÿ�^ �+	��� aÉ[���^ZYÆV5U�nh^é`�VX`�U%YÆYop
`�VX^��£��[%n�fS�v[¤��g�/Õ^�nh^Zb�f�ü�`�nhü�[�VX^ZV��)5_bOfhÿ�^M[%b�^Eÿ>U%b��dcÕgÆb
YÆ[�û�U%Y�gÆYÆYÆ`�aÉgÆb>U�fhgÆ[�b¥�¨[�nhaM`!Y U�^lfhÿ!^][�`!fhü!`!fHn�U���giU%b�û�^ægÆbéU�!gonh^Zû�fhgi[%b/gÆVÑûZ[%aÉü�`�fh^��.� nh[�a+fhÿ�^�gÆb�û�g���^Zb�f�n�U��!giU�b�ûZ^jU%b����nh[%a fhÿ!^HVX`!n���U�ûZ^M[�nhgÆ^Zb�f�U�fhgÆ[�bdc���ÿ�gÆû�ÿOnh^��m`!gonh^ZVâfhÿ!^E^1��U�YÆq
`>U�fhgÆ[�bl[��#fhÿ!^ �
	��� ��[%nâUjVXgib ��YÆ^��mgÆ^1�¦��^Zû�fh[%n�U�b��]Yig��%ÿmf��^Zû�fh[%nlü>U�gÆn��P5_bçfhÿ!^/[%fhÿ�^�næÿ�U%b��dc�fh[<gÆaÉü!nh[���^£Rà[%bmfh^�q8�U�nhYÆ[ln�U%b���[�a§��U�Y3:/aÉ^�fhÿ�[��!Vâý�p/U�ü�ü�Yop�gÆb��]gÆaÉü�[%nXf�U�b�ûZ^
VhU%aÉü!YÆgib �!co�!gonh^Zû�fhgÆ[�b!VEVXÿ![�`!Y��<ý�^.�%^Zb�^�n�U�fh^��*fhÿ>U�fO�¨[�YÆYÆ[��
U�ü!nh[%ý>U%ý!gÆYigof�p.�!^Zb!VXgof|p1[*�Õfhÿ�^ �
	��� aE`�YofhgÆü�YÆgÆ^��Mý�pÉU�ûZ[�q
VXgÆb�^���`�b�û�fhgi[%b �
e<ü!n�U%û�fhgiûZU%YÆYopH`�VX^1��`�Y �
	��� aM`!V�fÔVX`!ü�ü�[�nXf#ý�[�fhÿHf�U�V�:mV��¨ b&�¨[�nXfh`�b>U�fh^ZYop�c�ü!ÿ�p!VXgÆû�U�YÆYÆpMý>U�VX^�� �
	��� V�û�[�b�f�U%gÆbÉa]U%b�p

ûZ[%aÉü�YÆ^1@���[%nhaM`!YiU%^�c�fhÿm`�Vdb�[�f¯[�b!YopHU%ü!ü�Yop�gib �âU%ûZûZ`�n�U�fh^�gia1q
ü�[%nXf�U�b�ûZ^ÉVhU�aÉü�YÆgÆb��¶gÆVjÿ�[%ü�^ZYÆ^ZVXVZc�ý!`!fH^���^�b*fhÿ�^ZgonjVXgÆaÉü�YÆ^
^��%U%YÆ`>U�fhgÆ[�b¶gÆV�n�U�fhÿ!^�n�fhgiaÉ^_ûZ[�b!VX`�aÉgÆb��&�- ÿ�gÆV	gÆV	[�b!^Enh^�U�VX[�b7��ÿmpàfhÿ�^(%�ÿ![�b��laÉ[��!^�Y�gÆV�V�fhgiYÆY¯gÆb
ûZ[%aÉaÉ[�b3`!VX^7�!^ZVXü!gÆfh^O[*�EgofhV¢�!^1��ûZgÆ^Zb�û�gi^�V��PT|b4�%YÆ[�ý>U�Y	gÆYoq
YÆ`�aÉgÆb>U�fhgÆ[�bãU%Y���[�nhgofhÿ�aÉVZc�gof1gÆV1`�VX`�U%YÆYopéaÉ[��!g��>^��*fh[�VhU�fXq
gÆV!��p nh^Zû�giü�nh[�ûZgof|p # F�© # U�b��Nfh[ãU%YÆYÆ[��èVXgÆaÉü!Yi^5gÆaÉü�[%nXf�U�b�ûZ^
VhU%aÉü!YÆgib � # I�� - ÿ�^Ma]U%gÆbª��gÆVhU�� �%U%b�f�U*��^1[*��fhÿ�^Eü�ÿ�p�VXgiûZU%YÆYop
ü�YiU�`�VXgÆý�YÆ^�%Êÿ�[%b��MaÉ[���^ZY>gÆV�^��mg3�!^Zb�fG��[%n.«y�%n�U%W�gib �ÉU%b ��YÆ^ZV�¬��ÿ�^�nh^1gofHý�^ZûZ[�aÉ^�V���U�n":M��Tg�vfhÿ�^E^1@�ü�[�b!^Zb�f	ü>U�n�U%aÉ^�fh^�nHgiV
ÿ�g��%ÿÔc�fhÿ!gÆV+�!U�n":�^�b�gÆb��	gÆVÊfXnh`�^G� nh[�aQfS�v[��!g�/Õ^�nh^Zb�f�U%VXü�^�û�fhV��
e�f��%n�U%W�gib �]U%b ��YÆ^ZV_ý�[�fhÿàfhÿ�^	n�U��!giU%b!ûZ^jU%b��æfhÿ�^	fh[�f�U%YÔnh^�q0>^�û�fh^��Mü�[���^�nvVXÿ�U�nhü�Yops�!^Zû�nh^�U%VX^�� - ÿ�^�aÉgÆVXVXgÆb��	ü�[���^�nvý�^�q
ûZ[%aÉ^ZV¯b�[�fhgiû�^�U%ý!Yi^�gÆbEgia]U*��^ZVK�%^Zb�^�n�U�fh^��Mý�pO��YÆ[%ý>U%Y!gÆYiYÆ`!aÉgÆq
b>U�fhgÆ[�b/U�Y3�%[%nhgofhÿ�aÉV��- ÿ�gÆV�ü>U�ü�^�n¯gÆb�fh^Zb���VÔfh[��!^���^ZYÆ[�üjUÑûZYiU�VXV¯[�� �
	��� aÉ[���q
^ZYÆV�� - ÿ!^Ñü�nh[�ü�[�VX^��1aÉ[��!^ZYÆV�U�nh^âü�ÿ�p�VXgiûZU%YÆYop1ü�YiU�`�VXgÆý�YÆ^�c�ý!`!f
b�[�flü�ÿ�p�VXgiûZU%YÆYop3ý�U%VX^��M�
Tsf]û�U%bNý�^D�mgÆ^1�v^��NU%VlU<a]U�fhÿ�^�q
a]U�fhgÆû�U�YÕûZ[�b!V�fXnh`�û�fhgÆ[�blfhÿ>U�f�gÆV�VXgiaÉü!YÆ^Ñfh[Mû�[�aÉü�`�fh^_U�b��lgiV
ü>U�nXfhgÆûZ`�YiU�nhYopæ^1ÉûZgÆ^Zb�f6�¨[�n_gÆaÉü�[�nXf�U%b�û�^	VhU%aÉü!YigÆb � �
k�ü�^ZûZg���ûÑaÉ^ZaEý�^�nhV�[��dfhÿ�^âb�^1� û�Y U�VXV�û�U%b]ý�^'�!^1��b�^��1gÆb

UÑb!^1�=��UZp?� - ÿ�^�û�[�aÉü�`�f�U�fhgÆ[�b�U%YmûZ[%V�f�[*��fhÿ!^�b�^1� �+	��� V
gÆV�ûZ[%aÉü>U�n�U�ý�YÆ^�fh[Hfhÿ�U�fv[��Õfhÿ�^�%�ÿ![�b �jaÉ[���^ZYk� - ÿ�^ÑaÉ[��!^ZY
gÆVÉU%ý!YÆ^æfh[5U%ü!ü!nh[�@�gia]U�fh^lfhÿ!^¢�mgÆVX`>U�Y�ü!nh[%ü�^�nXfhgÆ^ZV1[��ÑaÉ^�fXq
U%YÆVZcmü!Y U�V�fhgÆûZVZcmnh^10>^Zû�fhg3��^�c�nh^�fXnh[�qsnh^$0>^Zû�fhg���^âU�b��]U%b!giVX[�fXnh[�ü!giû
a]U�fh^�nhg U�YÆV��
®dö.¯ ²>®�ú¨³ ¯s°.±9²- ÿ�^âûZ[%aÉü�YÆ^1@1aÉ[���^ZYÆV�fh[Hý�^âü!nh[�ü�[%VX^��]ýmpEfhÿ�gÆVvü�U%ü�^�n�U�nh^
ý>U�VX^��][�bæUEVXgÆaÉü�YÆ^�cm^ZYÆ^ZaÉ^�bmf�U�nXp �
	��� aÉ[���^ZYk� - ÿ�gÆV Çh¿�Ø
Ãh·Ä¾EÍ�Î�ÏÑÐ gÆV
E|`�V�fjU]a]U�fhÿ!^Za]U�fhgÆû�U�Y�fh[�[�Y�cM��^���[æb![%f�gÆb!q
fh^Zb��lfh[1`!VX^�gÆf���gonh^Zû�fhYop¢��[%n�nh^Zb��!^�nhgÆb��&�T|b/fhÿ�^��¨[%nhaE`�YiU%^Efhÿ�^Mû�Y U�VXVXgÆû�U%Y�b�[%f�U�fhgÆ[�b�VHU�nh^1`�VX^���³�´
U%b��¶µ U�nh^¶fhÿ�^/`�b!gof¢��^Zû�fh[%nhVÉfh[<fhÿ!^¶YÆg3�%ÿ�fàVX[%`!nhûZ^5U%b��
fh[æfhÿ!^A�mgÆ^1��ü�[�gÆb�f�c · gÆVHfhÿ!^M`!b�gof�b�[�nha]U%YK��^Zû�fh[%nH[��vfhÿ�^
VX`!n��¨U%ûZ^â^ZYÆ^ZaÉ^Zb�f�� - ÿ�^�´+¸>U%b��Aµ¢¸���^Zû�fh[%nhV�U�nh^�fhÿ�^�nh^ZVX`!YÆfhV

[*��aÉgonXnh[%nhgÆb��¶fhÿ!^.´QU%b��¥µ¹��^Zû�fh[�nhVMU�û�nh[�VXVMfhÿ!^Éb�[�nha]U%Y��^Zû�fh[%n�·B� - ÿ�^¶VX`!ý�VXû�nhgÆü!f�º gib��!gÆû�U�fh^ZV1fhÿ�^æ[%nXfhÿ�[���[%b>U%Y
ü�nh[*E|^Zû�fhgÆ[�b [��jfhÿ�^£�%g3��^Zb×`�b�gof9��^Zû�fh[�nhVæq1[�n¶fhÿ�^�gÆnà^Zb��mq
ü�[%gÆbmfhV�q�[�b�fh[jfhÿ�^�ý>U�VX^�ü�YiU%b!^HU%V�VXÿ�[���b¶gÆb»����`�nh^A¼��
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² ú�½>ù#± í õ ò6¾ µX»%È]µ�¹�º�Âæ»�Ë	¹�Á�µ�Í�Î�ÏÑÐ×¼�µ¨äÊ¸�·¨¹�·Ä»�¸
- ÿ!^	ý>U�VXgiû �+	��� giV�ý�U%VX^��l[�blVXgiaÉü!YÆ^���^Z[%aÉ^�fXnhgÆû	ûZ[%b!q

V�fXnh`!û�fhVZcÊb>U�aÉ^ZYop<[%bçûZgonhûZYÆ^ZVÉ[%bãfhÿ!^æý�U%VX^æü�YiU%b!^�� � ^1��[%nh^�%g���gÆb �	fhÿ�^6�!^$�>b�gofhgÆ[�bM[���fhÿ�^�ü�nh[�ü�[%VX^��1ý>U�VXgiû �
	��� c�fS�v[
b![%f�U�fhgi[%b�VâU�nh^�gÆb�fXnh[��!`!ûZ^��M� gonhV�fhYop�c�YÆ^�fK¿sÀU´ ¸ ÁGÂ�Ã�Ä ��^Zb�[�fh^�fhÿ!^�û�[�aÉaÉ[�b�ü�U�nXf#[��mfS�v[
û�gÆnhû�Yi^�VZc>b>U�aÉ^ZYop]fhÿ�^�`�b!gof�ûZgonhûZYÆ^O��gofhÿ¶û�^Zb�fXnh^�gib£Å4û�U�YÆYi^��
fhÿ!^1ý>U�VX^ÉûZgonhûZYÆ^lU%b��5fhÿ�^1ûZgonhûZYÆ^][���n�U��!gÆ`�V Ã U�b��*û�^Zb�fXnh^´ ¸ Á �
km^ZûZ[�b��!Yop�cmYÆ^�f�fhÿ�^�ÆªÀU´ Â µ Ä aÉ^�fXnhgiûÑý�^_fhÿ�^'�!gÆV�f�U%b!ûZ^	[*�

fhÿ!^�´+¸ÁéU%b��¢µ Á ü�[�gÆb�fhV���TsfÑûZU%bàý�^�VXÿ![���bàfhÿ>U�fÆªÀU´ Â µ ÄKÇÉÈ µ Á£Ê ´ ¸ Á È�ÇËÈ Ì Ê ÀU·ÎÍ ÌÏÄ · È À!¼ Ä��ÿ!^�nh^ Ì7Ç ´sÐ¢µ7�*T�f�aM`!V�fÊý�^�^ZaÉü�ÿ�U%VXgÆVX^��Efhÿ�U�f Ì giV�b�[�f
fhÿ!^HVhU%aÉ^jU%Vâfhÿ�^Hÿ>U�Y�� qU��UZp/`�b!gof'��^�û�fh[%n��!^Zb![%fh^��¶`!VX`>U%YÆYop
ý�p»Ñ�c!VXgÆb�ûZ^ Ì gÆV ¸�»�¹�¸�»%º�ÈÉ¿%Å ·¨Ã�µh¼ �
\Ñ[%fh^	fhÿ>U�fP�¨`!b�û�fhgÆ[�b9ÆëgÆVÑV�p�aÉaÉ^�fXnhgÆû�c�fhÿ�U�f�gÆVÆªÀU´ Â µ ÄKÇ ÆªÀkµ Â ´ Ä

VXgÆb!ûZ^1fhÿ�^.��giV�f�U�b�ûZ^][*��´ ¸ Á×U%b��Bµ Á gÆVjfhÿ!^1VhU%aÉ^]U�Vjfhÿ!^��gÆV�f�U%b�û�^�ý�^�fS�v^Z^Zb9µ¢¸ÁéU%b��¢´ Á �¨ VXgib �jfhÿ!^ZVX^âb�[%f�U�fhgÆ[�b�VZc�fhÿ!^�ý>U%VXgÆû �
	��� ûZ[�nXnh^ZVXü�[�b���q
gÆb �Mfh[Mü�U�n�U%aÉ^�fh^�n Ã ÀUÒsÓ Ã Ó4Ô Ä gÆV'��^1�>b!^��lý�pM³

ÕMÖ× À Ã(Â ´ Â µ ÄØÇ Ù¤Ú À Ã�Ä g��ÏÆªÀU´ Â µ Ä Ó Ã(Â
ÒE[%fhÿ�^�n���giVX^�� ÀgÔ Ä

��ÿ!^�nh^ Ú À Ã�Ä giVâUMû�[�b�V�f�U�b�f'��^Zü�^Zb��!gÆb��E[�b Ã �
\Ñ[%fh^Hfhÿ>U�f'ÆªÀU´ Â µ Ä Ó Ã aÉ^�U%b!Vâfhÿ�U�fÑfhÿ�^Hü!nh[�E�^Zû�fhgi[%b

[*�
µ gÆV�gÆbOfhÿ!^MûZgonhûZYÆ^1[*�vn�U��!gÆ`�V Ã ci��ÿ�gÆû�ÿ5gÆV	ûZ^Zb�fXnh^��Oý�p
fhÿ!^	aÉgonXnh[%n�[*�Êü!nh[�E�^Zû�fhgÆ[%b£´âc!gU� ^��µ ÁÜÛ ¿sÀU´ ¸ Á Â"Ã�Ä$Ý- ÿm`!V�fhÿ�^ �
	��� U�YiVX[��!^Zü�^Zb��!V¯[%b Ã c���ÿ�gÆû�ÿMgÆVÊVXÿ�[���b1ý�p
gÆb!ûZYÆ`��!gÆb �Egof�U�V�fhÿ�^��!nhV�f�ü>U�n�U%aÉ^�fh^�n�� - ÿ�^_V�f�U�n�û�ÿ�U�n�U�û�fh^�n
gÆV#fh[â^ZaÉü!ÿ>U%VXgÆVX^Êfhÿ�^Ø��U%û�f�fhÿ>U�f�fhÿ�gÆV�gÆV¯U�ý>U�VXgiû �
	��� ��nh[%a��ÿ!gÆû�ÿæ[%fhÿ�^�n �+	��� VP��gÆYÆY#ý�^	û�[�b�V�fXnh`!û�fh^��M�

VWCX�Z�[)\?^�_a`�b�_ac�d�Z1e Vgfihifaf ` V e c!jke `�l # N�N�N



� �����'������� � ���%���������)���"� �X�'�����a����� ���Ï���Ê�a�Ê�!���k���������l������� �����3�����i���!� ���v�%�����k�������'� ���v�m� �i��¡ Þ
R<1 R=1 R>1

c(R) = 1/R c(R) = 1/2 π π² ú�½�ù#± í ® ò Ú�»%ÃhÃh·ÄÇZÅiµHºXµ�ÅÆ¿%¹�·Ä»%¸!Ã�¹s»]¹�Á�µjÇh¿%Ã�µM¾�·¨ºX¾ZÅiµ
- ÿ�^�ý�U%VXgÆû �
	��� gÆV�UâûZ[�b!V�f�U%b�f Ú À Ã�Ä g���fhÿ�^�ü�nh[*E|^Zû�fhgÆ[�b

[���fhÿ!^�aÉgonXnh[%nhgÆb���[*��´<[�b�fh[_fhÿ�^�û�^Zb�fXnh^â[*��fhÿ�^6��gÆnh^�û�fhgÆ[�b>U�Y
VXü�ÿ!^�nh^]U%b���fhÿ�^Éü�nh[*E|^Zû�fhgÆ[�b-[*�6µ U�nh^]b![%fO�¨`�nXfhÿ�^�nHfhÿ>U�bÃ �
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Basic BRDF at 0 and 60 incident degrees

1

² ú�½�ù#± íBß ò ÍÑ¿%Ãh·Ä¾	Í�Î�ÏÑÐOËZ»%º Ã¦Ç Ò Ý Ô
- ÿ�^<ûZ[%aÉü�`�f�U�fhgÆ[�b [��1fhÿ!^<ý>U�VXgÆû �
	��� �¨`!b�û�fhgÆ[�b giV��`�gofh^	VXgÆaÉü�YÆ^�³
�¯xZ�|�o���¯¥�t+àÊ�aá6âyã.â!ä.â!å¯�æ¤ç åBèéãê , ç4ë æ(ì ��äîí æ �Uä ë ,ï3ð � ê ,�ñ á , �oò æ�ó�ôBõ1ó ò�ö õ�ô£÷ �aáv�ó�ø3ù�ó õ1ó ò�ö õ�ô£úó�ô�û

®dö�õ>ö�° í ³�ú�ü�± ð ³�ú�° î- ÿ�^�ý�U%VXgÆû �
	��� gÆVÊnh^�ûZgÆü!nh[�û�U�YÄc���ÿ�gÆû�ÿMgiV¯nh^Zü�nh^ZVX^Zb�fh^��jýmp
g3�!^Zb�fhgof|p Õ Ö× À Ã�Â ´ Â µ ÄKÇ Õ Ö× À Ã(Â µ Â ´ Ä
VXgÆb�ûZ^HU�ûZûZ[�n��!gÆb��1fh[���^1�>b!gofhgi[%bªÀgÔ Ä gofâgÆV�^���`�g���U�YÆ^Zb�f�fh[ÆªÀU´ Â µ ÄKÇ ÆªÀkµ Â ´ Ä$Ý

®Õö�®dö�ýÑø í ±*½ î ³ ð ø ® í ±*þ�²�°Zú ð ø®Õö�®dö�õ>ö ¬»ÿ� í ñ ð�� ù ø ³�°Zú ð ø- ÿ!^�ü�[��v^�n�nh^10>^Zû�fh^��1gÆbmfh[	fhÿ!^�ÿ>U%Y�� q�VXü�U%ûZ^6��nh[%aQfhÿ�^�ü�[�gÆb�f
YÆg���ÿ�fÑVX[�`�nhûZ^M[*��`!b�gofÑgÆnXn�U��!giU%b!ûZ^MVXgofh`�U�fh^��¶gÆb7�!gonh^Zû�fhgÆ[%bB´
gÆVÑû�U%YÆYÆ^��/fhÿ�^(�!gonh^Zû�fhgÆ[�b�qy�!^Zü�^Zb��!^Zb�f ¿�ÅÆÇ�µX¼�» cd[%nÑfhÿ�^ ¼%·¨ºXµh¾ZØ
¹�·�»%¸�¿�Å>Á�µ�ÈE·Ä»%ÃÄÀ!Á�µ�º�·Ä¾h¿�Å#ºXµ¨á�µh¾�¹s¿�¸�¾�µ ³� ÀU´ ÄÏÇ � � Õ × ÀU´ Â µ Ä ÀU· Í�µ Ä����
	�Ý À�� Ä
- [lVhU�fhgÆV!� p�^�b�^�n"��p/ûZ[�b!VX^�n"�%U�fhgÆ[�bdc�fhÿ�^Hnh^10>^Zû�fh^��/ü�[��v^�n

ûZU%b�b![%f�^1@�ûZ^�^��æfhÿ�^_gib!ûZ[�aÉgÆb �Mü�[���^�n�c!fhÿ>U�f�giV� ÀU´ Ä Ó¦¼ Ý À� Ä
- ÿ!^HU%YÆý�^��![É[*�¯fhÿ�^	ý�U%VXgÆû �
	��� û�U%b¶ý�^_^�U%VXgÆYopD��^�fh^�nXq

aÉgÆb!^����$T|b'��[%nhaE`�YiU�À�� Ä fhÿ�^ÊaM`!YÆfhgÆü!YigÆû�U�fhgÆ[�b���gofhÿ�ÀU·BÍ µ ÄØÇ
û�[�V � 	 û�[%nXnh^ZVXü�[%b��!V5fh[3fhÿ�^ À�ºX»���µX¾�¹�·Ä»�¸ »�¸�¹s» ¹�Á�µçÇh¿%Ã�µ
À>ÅÆ¿%¸Õµ � - ÿm`�VZc#U%ûZûZ[�n��!gÆb��æfh[D�!^1��b�gofhgÆ[�b!V»ÀgÔ Ä U%b��éÀ�� Ä fhÿ!^
U�YÆý�^��![�gÆVvü�nh[�ü�[�nXfhgi[%b>U�Y�fh[	fhÿ�^âU�nh^ZUH[*� ¿sÀU´+¸Á Â"Ã�Ä c�fhÿ>U�fvgÆV��� ÀU´ Ä+Ç Ú À Ã�Ä Í�eânh^�U&Àg¿sÀU´ ¸ Á Â"Ã�Ä�Ä$Ý À�� Ä
- ÿ!^�U�nh^�U_[*��¿sÀU´ ¸ Á
Â"Ã�Ä giVÊa]U�@!gÆaE`�a¦��ÿ�^Zbs´ Ç ·�c�gk� ^��´ ¸ Á Ç Å¢�)Tg� Ã�� ¼%c#fhÿ!giV�aÉ^ZU%b�V	fhÿ�U�fHfhÿ�^MûZgonhûZYÆ^lgÆVHb�[�f

fXnh`!b�û�U�fh^�����Ty� Ã�� ¼�c>fhÿ!^Zb¶fhÿ�^HûZ[%aÉaÉ[�b¶ü�U�nXf_ûZ[�gÆb�û�g���^ZV��gofhÿlfhÿ�^�ý>U�VX^�ûZgonhûZYÆ^��ÕkmgÆb�ûZ^
e�nh^�U�Àg¿sÀU´ ¸ Á Â"Ã�Ä�Ä Óçe�nh^�U Àg¿sÀyÅ Â"Ã�Ä�Ä$Â À�� Ä

g��¯gÆb¶^��m`�U�fhgÆ[�bBÀgÔ Ä ��^�û�ÿ�[�[%VX^
Ú À Ã�ÄKÇ ¼

e�nh^�U Àg¿sÀyÅ Â�Ã�Ä�Ä Ç ¼À��9Í�aÉgÆb À!¼ Â�Ã , Ä�Ä Â À�� Ä
fhÿ!^Zb]fhÿ�^HU%YÆý�^���[� � ÀU´ ÄØÇ e�nh^�U Àg¿sÀU´ ¸ Á Â�Ã�Ä�Ä

e�nh^�U Àg¿sÀyÅ Â"Ã�Ä�Ä À�� Ä
��gÆYÆY�b![%f�^$@!û�^Z^��s¼�c�fhÿ>U�f#gÆVZcZfhÿ�^Êý>U�VXgÆû �
	��� ��giYÆY�ûZ[%b�VX^�n"��^
^�b�^�n"��p?�

R

t

t

d
α β

1

1

2

² ú�½>ù#± í�� ò ô�»%ÈÑÀ>½m¹s¿%¹�·Ä»%¸¶»�Ëâ¹�Á!µÑ·¨¸�¹�µ�º�Ã�µh¾�¹�·�»%¸5»�Ë�¹�Öv»M¾�·¨º�Ø
¾ZÅiµ�Ã

VW¦X�Z�[)\�^1_a`�b�_ac�d�Z�e Vyfihif�f ` V e c!jae `�l # N�N�N



� � ������������� � ���%���������)���"� �X�'�����a����� ���K���Ê�k�¯�!���k�������6�l������� �����3���������!� ���v�%�����k��������� ���v�m� �i��¡
- [Ñû�[�aÉü�`�fh^�eânh^�U&Àg¿sÀU´ ¸ Á
Â"Ã�Ä�Ä cZfhÿ!^�gÆb�fh^�nhVX^Zû�fhgi[%bM[*�!fy��[

ûZgonhûZYÆ^ZVlaM`!V�f]ý�^D�!^�fh^�nhaÉgib!^���� S ^�f]fhÿ�^£�!gÆV�f�U�b�ûZ^/[*��fhÿ�^
fS�v[]ûZgonhûZYÆ^ZV	ý�^ � �iTy� � � ¼ Ê Ã [�n � ! ¼PÐ Ã c>fhÿ�^�b¶fhÿ�^
VX[�YÆ`�fhgi[%b gÆV]fXnhg��mgiU%Yk�  [%n]fhÿ�^¶gÆb�fh^�nhVX^Zû�fhgib �-û�U%VX^%c
��^/ûZU%b
`�VX^]fhÿ�^���[�YÆYÆ[���gÆb �ª�¨[�nhaM`�YiU�^lfhÿ�U�fE`�VX^ZVMfhÿ!^]b�[%f�U�fhgÆ[�bé[�����%`!nh^"&³

eânh^�U&Àg¿sÀU´ ¸ Á Â"Ã�Ä�ÄÏÇ$# # Ð # , Ç
¼�Í�À�% Ê ûZ[%V&%DÍZVXgÆb'% Ä Ð Ã , Í�À)( Ê ûZ[%V*(¤Í�VXgib+( Ä$Ý À�, Ä- ÿ�^jU�b���YÆ^-%ãU%b�� (<û�U%bdc>gÆb¶fh`!nhbdc>ý�^O�!^�fh^�nhaÉgÆb�^��à`!VXgÆb��

fhÿ�^Ñfhÿ�^Z[�nh^Za4[��ÊûZ[%VXgÆb�^HU%b ��YÆ^ZV�³� , Ð4¼ , Ê Ô � ÍZûZ[�V�% Ç Ã ,� , Ð Ã , Ê Ô � Í Ã Í�ûZ[%V�( Ç ¼ Ý À!¼�Ò Ä
- ÿ�^���gonh^Zû�fhgÆ[�b�qS��^Zü�^Zb��!^Zb�f�U�YÆý�^��![j[��Ôfhÿ�^_ý�U%VXgÆû �
	�����gÆYÆYÕnh^ZU%û�ÿ]fhÿ!^ÑgÆaÉü�[%VX^��Éa]U*@�gÆaM`�aQ[*�+¼��¨[�nP��^�nXfhgÆû�U�Y�gÆYiYÆ`�q

aÉgÆb>U�fhgi[%bÔc!gk� ^�� ��[%n'´ Ç ·B�
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Albedo of the basic BRDF in the range of R = [0..1]
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² ú�½�ù#± í0/ ò21 ÅÆÇ�µX¼�»l»�Ë_¹�Á�µHÇh¿%Ãh·Ä¾�ÍvÎâÏâÐ/ËZ»%º	ÃhÈÉ¿%Å¨Å Ã Ü�¿�ÅoØ
½�µ�Ã43 Ã Ó ¼65
H ÿ�^Zb Ã7� ¼àcÕfhÿ!^Zb5fhÿ!^1U�Yiý�^��![¶^���`�U%YÆV	fh[æfhÿ!^En�U�fhgÆ[

[��_fhÿ�^/U�nh^�U*[��_fhÿ�^àü�[%VXVXgÆý�YopçfXnh`!b�û�U�fh^��çû�gÆnhû�Yi^OU�b��éfhÿ�^
U�nh^ZUæ[���fhÿ�^jûZ[�aÉü!YÆ^�fh^MûZgonhûZYÆ^1[*�vn�U��!gÆ`�V Ã �  [%n Ã8� ¼EgÆf
gÆVâfhÿ!^_n�U�fhgÆ[É[*�¯fhÿ�^HU�nh^ZUM[��¯fhÿ!^�ü�[�VXVXgÆý�YoplfXnh`�b�ûZU�fh^��àý�U%VX^
ûZgonhûZYÆ^HU%b��]fhÿ!^�U�nh^ZUM[��Ôfhÿ�^'��ÿ![�YÆ^	ý>U�VX^�ûZgonhûZYÆ^�À�� Ä � - ÿm`!VZc��^MU%Y���UZp�V�ÿ>U���^ � � ÀU· Ä6Ç ¼�ci�¨`�nXfhÿ�^�nhaÉ[�nh^Egof�gÆV	^ZU%V�p/fh[
VXÿ�[��×fhÿ>U�f

Ò Ý ��,�¼ � Ô� Ê:9 �Ô;� Ó ��� ÀU´ Ä Ó ¼
ÿ�[%Y3�!V�� - ÿ!^ÉaÉgÆb�gÆaM`!aëü�[�gÆb�fjgÆVMU�fEÿ![%nhgÆWZ[%bmf�U�Y�gÆYÆYi`!aÉgÆb>U�q
fhgÆ[�b¥À�ÀU· Í�´ ÄKÇ Ò Ä U%b��¢�¨[�n Ã¦Ç ¼�� [%nàVXa]U%YÆY���U�YÆ`�^ZVæ[�� Ã c�fhÿ�^�U%YÆý�^���[çgÆV¤�%^Zb�^�n�U�YÆYÆpË¼%c
U%b��<^���^ZbéU�fMfhÿ!^la]U�n"��gÆb�Vj[���fhÿ!^æý�U%VX^lûZgonhûZYÆ^ægof1ÿ�U�n���YÆp�!^�û�nh^�U%VX^�VM`�b��!^�njÿ�U%Y��S� - ÿ!gÆVMgÆVA��`�^1fh[¶fhÿ�^��¨U%û�fEfhÿ>U�fjgÆb

fhÿ!gÆVvû�U�VX^âfhÿ!^ÑûZgonhûZYÆ^ÑgiV
��^Zb!^�n�U%YÆYop]b�[�f�fXnh`!b�û�U�fh^��dc�[%b�YopA��[%n
gÆYÆYÆ`�aÉgÆb>U�fhgÆ[�b¶U�f��%n�U%W�gib �]U%b ��YÆ^ZV��- ÿ!^ Ã Ç ÒãVXgofh`>U�fhgÆ[�b×gÆVàfhÿ�^5a]U�n"�%gib�U%Y	ûZU%VX^*û�[%nXnh^�q
VXü�[%b���gib �5fh[*U�VXü�^Zû�g U�YÑaÉgonXnh[�n��+T�bãfhÿ!gÆVÉû�U%VX^£¿sÀ Ã�Ä ý�^�q
û�[�aÉ^ZV�U � gÆn�U�û�qy�!^ZYof�U(��`�b!û�fhgÆ[�b �- ÿ!^ Ã Ç Ô<û�U%VX^�ûZ[%nXnh^�VXü�[�b���Væfh[-fhÿ�^Og3�!^ZU%YO�!g�/Õ`!VX^
aÉ[���^ZY�c���ÿ�^�nh^HU�YiVX[ � ÀU´ Ä=< ¼��
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Albedo of the basic BRDF in the range of R = [1..2]
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R=2

² ú�½>ù#± í4> ò?1 ÅÆÇ�µh¼�»�»�Ë�¹�Á�µ�Çh¿%Ãh·Ä¾�Í�Î�ÏÑÐÉËZ»%º�ÅÆ¿%ºÄÌ�µ Ã Ü�¿�Å ½�µ�Ã3 ¼�Ó Ã Ó¶Ô;5
®Õö�®dö�®döA@ í ² ø ²�ÿ� í ñ ð
T�blU�����gofhgi[%bæfh[jfhÿ�^���gonh^Zû�fhgÆ[�b�qS��^Zü�^Zb��!^Zb�f�U�YÆý�^��![s�!^1��b�^��
ý�pO^���`�U�fhgÆ[�b4À�� Ä c �v^Éû�U%b<U%YÆVX[/gÆbmfXnh[���`�ûZ^1fhÿ!^1b�[�fhgÆ[�b<[*�
fhÿ!^ È]µX¿%¸3¿�ÅÆÇ�µh¼�» � - ÿ�gÆVA��gonh^Zû�fhgÆ[�b�q�gÆb��!^Zü�^Zb��!^Zb�fEU%b��Ü�!goq
aÉ^�b�VXgÆ[�b!Yi^�VXVG��U�YÆ`�^âgiVv^���`>U%Y>fh[Hfhÿ�^»«�nh^$0>^Zû�fhg��mgof|p&¬O�¨[%n���g���q��`�VX^�a]U�fh^�nhgiU%YÆV�� [�nMb![�b�qS��g�/Õ`�VX^1a]U�fh^�nhgiU%YÆVZc¯gofjû�U%b-ý�^.��^1�>b!^��*U�Vjfhÿ!^�v^Zg���ÿ�fh^��àaÉ^ZU%b»��U�Yi`!^�[��K��gonh^Zû�fhgÆ[�b�qS��^Zü�^Zb��!^Zb�fâU%YÆý�^���[�V�³� �Ï[gc�l Ç ¼� Í � � � ÀU´ Ä ÀU· Í�´ ÄB���DC)Â À!¼�¼ Ä
��ÿ!^�nh^�´ãgÆVvfhÿ!^�nh`!b�b!gib �O��^Zû�fh[�n�[��Ôfhÿ�^��!gonh^Zû�fhgi[%b>U�Ydÿ!^ZaÉgoq
VXü!ÿ�^�nh^	U%b��]fhÿ�^��v^Zg���ÿ�fhgÆb��s�¨U%û�fh[�n_gÆVOÀU· Í�´ ÄKÇ ûZ[�V � C �T�b fhÿ�^éû�U�VX^ã[*�l`�b�g���[%nha gÆYiYÆ`!aÉgib�U�fhgÆ[�bQ[%b�fhÿ�^-ÿ�U%Y���q
VXü�U%ûZ^%c�fhÿ!^9�%U%YÆ`�^l[��_fhÿ�^laÉ^�U%bçU%YÆý�^���[*gÆV1^���`>U�Y�fh[5fhÿ!^
n�U�fhgÆ[E[*�#fhÿ�^�nh^10�^Zû�fh^��]U%b��]fhÿ!^ÑgÆb!ûZg3�!^Zb�f�ü�[��v^�n��  g3�%`!nh^E�
gÆYÆYÆ`�V�fXn�U�fh^ZV�fhÿ�^'�%U%YÆ`!^ZV�[�� � �Ï[gc�l ��[%n�fhÿ�^Ñý>U�VXgiû �
	��� V�U%V
UP�¨`!b�û�fhgÆ[%bM[�� Ã � - ÿ�^vaÉ^�U%bjU%YÆý�^���[_gÆV¯aÉgÆb�gÆa]U%Y�U�f Ã¦Ç ¼��- ÿ!^ �
	��� U�b��/fhÿ�^1U�YÆý�^��![lû�ÿ�U�n�U�û�fh^�nhgÆVX^]Ula]U�fh^�nhgiU%Y� nh[�a fS��[»��g�/Õ^�nh^Zb�f�U%VXü�^�û�fhV�� - ÿ�^ �
	��� gÆV	`!VX^��¶fh[¢��^�q
VXû�nhgiý�^�fhÿ!^»«snh^10>^�û�fh^��1n�U���g U�b�ûZ^1¬EU�b��1gof�giVvU�VXû�U%YiU�n
��ÿ�gÆû�ÿ��^Zü�^Zb��!V�[%bMý�[%fhÿs´*U�b��(µ7� - ÿ�^�U%YÆý�^���[���^Zü�^Zb���gÆb��_[%b�Yop
[%b �!gonh^Zû�fhgÆ[�b¶´ VX^�n"��^ZVs��[%nÉfhÿ�^¢�!^�VXû�nhgÆü!fhgÆ[�bã[��Ñfhÿ�^¶«snh^�q0�^Zû�fh^��]ü�[���^�n"¬&� - ÿ!^	aÉ^�U%bàU%YÆý�^���[9Àa��ÿ�gÆû�ÿD�![�^�V�b�[%f���^�q
ü�^�b��][�b¤´ãU%b��¢µ Ä û�ÿ�U�n�U%û�fh^�nhgÆVX^ZV�fhÿ�^�U���^�n�U*��^_nh^$0>^Zû�fhg���q
gof�pæ[*��fhÿ�^ �
	��� �

VWCX�Z�[)\?^�_a`�b�_ac�d�Z1e Vgfihifaf ` V e c!jke `�l # N�N�N
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Mean albedo of the basic BRDF in the range of R = [0..2]

² ú�½�ùÔ± íIH ò ó�µh¿�¸*¿%ÅÆÇ�µX¼�»æ»�Ë	¹�Á�µEÇh¿%Ãh·Ä¾	Í�Î�ÏÑÐ
J @!U%aÉgÆb!gib �Mfhÿ�^�VX^jû�ÿ>U�n�U%û�fh^�nhgiV�fhgÆûZVZci�v^Hû�U%b/VX^Z^Hfhÿ�^�^�V�q

VX^Zb�fhgiU%YP��g�/Õ^�nh^Zb�û�^lý�^�fS��^�^Zb<fhÿ�^]ý�^Zÿ�U��mgÆ[�`�nM[*��fhÿ�^Ég3�!^�U�Y
aÉgonXnh[%n�[%ý!f�U�gib!^��æý�p1fhÿ!^_b!^1� �
	��� U%b��]fhÿ�U�f�[%ý!f�U�gib!^��
U%VÑUMYÆgÆaÉgofÑûZU%VX^���nh[%a:fhÿ�^�ÀU· Í�Ñ ÄLK %�ÿ![�b���q � YÆgib!b/aÉ[��!^ZY��gofhÿ�[%`!f��!g�/Õ`�VX^_ûZ[�aÉü�[%b�^Zb�f # L�� [%nâfhÿ�^Hg3�!^�U�Y�aÉ^�f�U�Y#aÉgonXnh[%n�c�ý�[%fhÿ¶fhÿ�^HaÉ^�U�bOU%b��àfhÿ�^�!gonh^Zû�fhgi[%b¥��^Zü�^Zb���^Zb�fHU%YÆý�^���[�VHU�nh^¤¼�cÕfhÿ>U�fHgiV � �Ï[gc�l Ç ¼
U%b�� � ÀU´ ÄD< ¼��<_[���^���^�n�c ��[%njfhÿ�^Ü«S%�ÿ![�b���qsaÉgÆnXnh[�n"¬!c ��ÿ�gÆû�ÿ-gÆVHfhÿ�^Mnh^�q
VX`�Yof_[���Yi^�fXfhgib �NMÜ�%[Éfh[ægÆb ��b�gof|p�c ��^Eÿ>U���^�¼ � � ÀU´ ÄO� Ò
U%b�� � �Ï[gc�l Ç Ò Ý �?�oT�b�fhÿ�^Mû�U%VX^][���U¤%�ÿ![�b �¶aÉgonXnh[%n�cdfhÿ�^
nh^10�^Zû�fh^��l^Zb�^�n"��pæfh^�b��!V�fh[MWZ^�nh[s��[%n��%n�U%W�gib �]U%b ��YÆ^ZV��- ÿ�^	aÉgonXnh[%nâû�U�VX^�[���fhÿ!^	b�^$�LaÉ[���^ZYÕgÆVâb![%f�^���`!g3�%U%YÆ^Zb�f
fh[OU¶aÉ^�f�U�YvaÉgonXnh[%njVXgÆb�ûZ^lU�fs��n�U%WZgÆb���U%b ��YÆ^ZVjfhÿ�^ÉaÉ^�f�U�YÆq
YÆgÆûàaÉgonXnh[%nhVHnh^10>^�û�fMfhÿ!^]fh[�f�U%Y�^Zb!^�n"�%p<ýmp�gÆb�û�nh^ZU%VXgÆb��5fhÿ�^�
	��� ý�pjU���U�û�fh[%n�[��)¼QP&ÀU·¶Í�´ Ä c���ÿ�gÆYÆ^�gibjfhÿ�^�b!^1�ãaÉ[��!^ZY
fhÿ�^ �+	��� gÆVjûZ[�b!V�f�U%b�f1U�b���fhÿ!^ÉVX[�YÆg3�-U%b ��YÆ^][���fhÿ�^1nh^�q0>^�û�f�U%b!ûZ^�gÆV�gÆb!û�nh^�U%VX^��jý�pA¼RP&ÀU·¥Í�´ Ä � - ÿm`!VÔfhÿ�^�b�^$�-aÉ[��!^ZY
gÆVvUÑg���^�U%Y+«|^Zb!^�n"�%pMaÉgonXnh[%n"¬	ý!`!fÊb�[�f�g���^�U%Y+«�n�U��!giU%b!ûZ^�aÉgÆnXq
nh[%n"¬(�¨[%nÑÿ�g��%ÿ�^�nâgÆb�ûZg3��^Zb�fâU%b��%YÆ^ZV��
®dö ß öÉ÷TS ü ð ±�°Z² ø ³ í ®Z² S üÏÿ�ú ø ½
k�`!ü�ü�[%VX^Mfhÿ>U�f��v^A��U�bmfHfh[¶ûZU%YÆûZ`�YiU�fh^]fhÿ!^Mn�U���giU%b�û�^É[��âU
ü�[�gÆb�flgÆbC�!gonh^Zû�fhgÆ[%b4µ �!`!^¶fh[*fhÿ�^/gÆYÆYÆ`�aÉgÆb>U�fhgÆ[�bN[*��fhÿ�^
VXûZ^Zb!^�� - ÿ�^/gÆb�ü!`!flU%b��ç[%`!fhü�`�f ºX¿�¼�·Ä¿%¸�¾�µ�Ã U HNa V , V�nRV #XW
U�nh^»��^Zb�[�fh^��*ý�pZY e l U%b��IY `�^1j cdnh^ZVXü�^Zû�fhg���^ZYop?� - ÿ�^1n�U���goq
U%b!ûZ^�gÆbàfhÿ�^'��gÆ^1��gÆb ���!gonh^Zû�fhgÆ[%b¤µ gÆV�³Y `�^1j Àkµ ÄKÇ �� Y e l ÀU´ Ä Õ × ÀU´ Â µ Ä ÀU· Í�´ ÄB���DC)Ý À!¼�Ô Ä
- ÿ�gÆV1gÆb�fh^��%n�U�Y�û�U%béý�^æU%ü�ü�nh[�@!gÆa]U�fh^��<ý�p*fhÿ�^¢Rà[%bmfh^�q8�U�nhYÆ[/aÉ^�fhÿ![���� ¨ VXgib �¶gÆaÉü�[%nXf�U�b�ûZ^1VhU�aÉü�YÆgÆb��lfh[ænh^���`�ûZ^

fhÿ�^��%U�nhgiU�b�ûZ^�cdfhÿ�^ÉgÆb!ûZ[�aÉgÆb��¤´ # Â ´ , Â�Ý�Ý�Ý�Â ´\[ ��gonh^Zû�fhgÆ[�b!V
U�nh^5b�[�f¶`!b�g��¨[�nhaÉYÆp4�!gÆV�fXnhgÆý�`�fh^��dc�ý!`!f]fhÿ�^�gÆnàü!nh[%ý>U%ý!gÆYigof�p

��^Zb�VXgof�pA��giV�fXnhgÆý!`!fhgÆ[�bA��`�b�û�fhgi[%bÉgÆVvU�f�YÆ^�U%V�f�U%ü!ü!nh[�@�gia]U�fh^ZYop
ü�nh[�ü�[�nXfhgi[%b>U�Ydfh[Mfhÿ!^	gÆb�fh^��%n�U�b����>k�gÆb!ûZ^]Y e l ÀU´ Ä gÆVÑ`!VX`>U%YÆYop
b![%fP:mb![���blU�q�ü�nhgÆ[%nhg�c���^	û�U�bæVhU�aÉü�YÆ^�´Ü��gofhÿàü�nh[�ý>U�ý�gÆYÆgof|p
ü�nh[�ü�[�nXfhgi[%b>U�Ydfh[Mfhÿ!^Ã ÀU´ Â µ ÄKÇ Õ × ÀU´ Â µ Ä ÀU· Í�´ Ä�v^Zg���ÿ�fh^�� �+	��� ��`�b�û�fhgi[%b � - ÿ�gÆV���`�b!û�fhgÆ[�b¶ÿ�U%VÑU%b¶gÆb�fh^�nXq
^�V�fhgib �*gÆYÆYÆ`�V�fXn�U�fhg���^àûZ[�b�fh^Zb�f�c�U%û�ûZ[%n���gib �*fh[Ofhÿ�^¶«�gÆb&��^�nhVX^
VXgofh`�U�fhgÆ[�b ¬ �iTg�¯fhÿ�^�nh^��v^�nh^MU1YÆg���ÿ�fÑVX[�`�nhûZ^EgÆbàfhÿ!^O��gÆ^1��gÆb ���gonh^Zû�fhgÆ[�bdc#fhÿ�^�b*fhÿ�^.��giV�fXnhgÆý!`!fhgÆ[�b-[*��fhÿ�^É^Zb!^�n"�%p*[�b*fhÿ!^
ÿ�U%Y���qsVXü�U%ûZ^lU*� fh^�nMfhÿ!^Énh^10>^Zû�fhgi[%b¥��[%`�Y3�ª�¨[%YiYÆ[��:fhÿ!^A�¨`�b!û�q
fhgÆ[%b Ã � `!b�û�fhgÆ[%b Ã Í ���DC U%YÆVX[»�!^1��b�^ZV�fhÿ�^HûZ[%b���gÆfhgÆ[%b>U%YÔü!nh[%ý!q
U�ý�gÆYÆgof|p/fhÿ>U�fjUæü!ÿ�[%fh[%b�gÆV�nh^10�^Zû�fh^��OgÆbmfh[lfhÿ�^EVX[�YÆg3�<U%b ��YÆ^��� C ��g���^Zblfhÿ>U�fÑgofâûZ[%aÉ^ZVG��nh[%a]µ # N��� `!^_fh[Mfhÿ!^���U%û�fâfhÿ�U�f Õ × giV�nh^Zû�giü�nh[�û�U%Y�c��v^�ÿ>U���^�³� Àkµ ÄKÇ � � Õ × ÀU´ Â µ Ä ÀU· Í�´ ÄB��� C Â À!¼T� Ä
��ÿ!gÆû�ÿégÆV1^1@!U%û�fhYÆp-fhÿ!^¢�%U%YÆ`!^æ[*�_fhÿ�^æU%YÆý�^���[7��`�b!û�fhgÆ[�bãgib�mgÆ^1��gÆb��¤�!gonh^Zû�fhgÆ[�bªµB�  [%njVhU�aÉü�YÆgÆb��à[*�6´ # Â ´ , Â�Ý�Ý1Ý�Â ´\[��gonh^Zû�fhgÆ[�b!VZc �v^�ÿ>U���^	fh[M`!VX^	fhÿ�^�^	 ÀU´ ÄKÇ Õ × ÀU´ Â µ Ä Í�ÀU· Í�´ Ä� Àkµ Ä ��� C À!¼6 Ä
ü�nh[�ý�U%ý�gÆYÆgof|p��!^Zb!VXgÆf�p���`�b!û�fhgÆ[�b � - ÿ�^�U%ü!ü!nh[�@�gia]U�fhgÆ[�b�[��mfhÿ!^
gÆb�fh^���n�U%Ydgibà^���`>U�fhgÆ[%bªÀ!¼�Ô Ä gÆV�³Y `�^1j Àkµ ÄØÇ � Àkµ Ä ÍT_a`bY e l ÀU´ ÄdcOe � Àkµ Äf Í [g hTi # Y e l ÀU´ h Ä$ÝÀ!¼R� ÄT�bMfhÿ�^�û�U�VX^Ñ[*�ÕgÆVX[%fXnh[�ü!gÆû �
	��� VÊfhÿ�^�U�Yiý�^��![��¨`!b�û�fhgÆ[%b�V
ûZU%bNý�^¶f�U�ý�`�YiU�fh^��3gÆb U*[%b�^�qy�!gÆaÉ^Zb!VXgÆ[�b>U�YÑf�U�ý�YÆ^��ØH ÿ�^Zb
ûZU%YÆûZ`�YiU�fhgib �MaE`�YofhgÆü�YÆ^ÑgÆb�fh^�nXnh^10�^Zû�fhgÆ[�b!VZcmfhÿ�^_a]U�gÆblû�[�aÉü�`�q
f�U�fhgÆ[�b>U�Y	ü!nh[%ý�YÆ^Za gÆVlfhÿ!^£��^Zb!^�n�U�fhgÆ[�b×[*��fhÿ�^7�!gonh^Zû�fhgÆ[%b�V� nh[�a4^���`�U�fhgÆ[�b¥À!¼6 Ä �¨[%YÆYi[���gÆb��»��giV�fXnhgÆý!`!fhgÆ[�b � 	O�
®Õö � öÉ÷6S ü ð ±�°Z² ø ³ í ®Z² S üÏÿ¨ú ø ½ ��ð ±]° Ì í #²>®�ú¨³ ¯(°.±9²®Õö � ö�õ>ö�j ² S üÏÿ�ú ø ½éú ø ®�ü í ³�ú�²�ÿ�³�²>® í ® [%nvfhÿ!^�gib�fXnh[���`�ûZ^��Éý�U%VXgÆû �
	��� VZc��v^_û�U�b]^�U%VXgÆYop.��^Zb!^�nXq
U�fh^O�!gonh^Zû�fhgÆ[%b�VP��gofhÿ/UA�!gÆV�fXnhgÆý�`�fhgÆ[�b¶[*�¯^���`>U�fhgi[%b¥À!¼T Ä �
S ^�f�`!VvûZ[%b�VXg3�!^�n+��nhV�f�UHû�gÆnhû�Yi^â[��dn�U���gÆ`�V Ãk� ¼ÑU%b��]U%V�q

VX`!aÉ^vfhÿ>U�fÊfhÿ�gÆVÊûZgonhûZYÆ^���[�^ZV�b�[%f�gÆb�fh^�nhVX^Zû�f�fhÿ�^�ý�U%VX^�ûZgonhûZYÆ^��T�bÉfhÿ�gÆV�û�U�VX^O¿sÀkµ ¸Á Â"Ã�Ä gÆV�g3�!^Zb�fhgÆû�U%Yi��gofhÿ]fhÿ�^âûZgonhûZYÆ^'��gofhÿ
û�^Zb�fXnh^âgÆb�µ ¸Á U�b��1[��Õn�U��!gÆ`�V Ã � - ÿ!^��%U%YÆ`!^â[*�Õfhÿ�^âU%YÆý�^���[
gÆV�¼�ý�^ZûZU%`�VX^	fhÿ!^	ûZgonhûZYÆ^HgÆVâb![%f�fXnh`�b!û�U�fh^����
S ^�fâ`�V6��^Zb!^�n�U�fh^ f b�`!aMý�^�n�[��ØÔ � ü�[�gÆb�fhVâgÆb!VXg���^�fhÿ�gÆV

û�gÆnhû�Yi^���gofhÿéU¶`�b!g��¨[%nha ��giV�fXnhgÆý!`!fhgÆ[�b�� - ÿ�^�VX^.��gÆYÆY�ý�^1fhÿ!^ÀU´ h Ä Á À�l Ç ¼ Â�Ý�Ý1Ý�Â f Ä ü�nh[*E|^Zû�fhgÆ[�b-ü�[%gib�fhVHgÆb�fhÿ!^Éü�YiU%b!^
[*�_ü�nh[*E|^Zû�fhgÆ[�b��vk�gÆb�ûZ^lfhÿ�^lü!nh[�E�^Zû�fhgi[%bNU�`!fh[�a]U�fhgÆû�U%YÆYopégÆb!q
û�Yi`��!^ZV�fhÿ�^9«�ûZ[�VXgÆb!^�¬A��U�û�fh[%n�gÆb � ÀU´ Ä c�nh^�qsü!nh[�E�^Zû�fhgib �Mfhÿ�^�VX^

VW¦X�Z�[)\�^1_a`�b�_ac�d�Z�e Vyfihif�f ` V e c!jae `�l # N�N�N



m � ������������� � ���%���������)���"� �X�'�����a����� ���K���Ê�k�¯�!���k�������6�l������� �����3���������!� ���v�%�����k��������� ���v�m� �i��¡
ü�[�gÆb�fhVH[�b�fh[àfhÿ!^1`�b!gÆfHÿ!^ZaÉgÆVXü�ÿ!^�nh^�n VHVX`!n���U�ûZ^�c ��^É[�ý�f�U%gÆb
fhÿ�^(´ # Â ´ , Â�Ý�Ý1Ý�Â ´\[ ��gÆnh^�û�fhgÆ[�b�V�[*��fhÿ!^s��^ZVXgonh^��7�!gÆV�fXnhgÆý�`!q
fhgÆ[�b��
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² ú�½�ù#± ípo òrq ¿%È_À>Å ·¨¸mÌ5Ö�Á�µ�¸ Ãs� ¼ ¿%¸>¼5¹�Á�µ¶¾�·�ºX¾ZÅiµ�Ãl¼�»
¸�»�¹v·¨¸!¹�µ�º�Ã�µX¾�¹

 [%nMUD��g���^Zbé`�b!gofs�mgÆ^1��gÆb��£��^Zû�fh[%nAµ5c�fhÿ�^]ü�nh[*E|^Zû�fhgÆ[�b
[�bãfhÿ�^¶ý�U%VX^¶ü!YiU%b�^OU�b��-fhÿ�^¶aÉgonXnh[�nhgib �<U�nh^¶nh^�U%YÆgÆVX^��3gÆb
fhÿ�^��¨[�YÆYÆ[���gÆb��.��UZpM³µ ¸Á Ç Ê µ Á Ç Ê Àkµ Ê ÀU· Í�µ Ä · Ä$Ý À!¼R� Ä- ÿ�^£�¨[�nhaM`!Y UÜ�¨[�n¶nh^�qsü!nh[�E�^�û�fhgÆb��éfhÿ�^B´ Á VhU�aÉü�YÆ^�ü�[%gÆbmf��ÿ�gÆû�ÿ*gÆVHgÆb�VXg3�!^Mfhÿ!^1ûZgonhûZYÆ^É[���ûZ^Zb�fXnh^Aµ ¸Á U%b��5[���n�U��!gÆ`�VÃ [%bmfh[Efhÿ�^	ÿ!^ZaÉgÆVXü�ÿ�^�nh^	gÆV�³

´ Ç ´ Á Ðut ¼ Ê ÀU´ Á Í�´ Á Ä Í�· Ý À!¼Q� Ä
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² ú�½�ù#± ípv òrq ¿%È_À>Å ·¨¸mÌ5Ö�Á�µ�¸ Ãs� ¼ ¿%¸>¼5¹�Á�µ¶¾�·�ºX¾ZÅiµ�Ãl¼�»
¸�»�¹v·¨¸!¹�µ�º�Ã�µX¾�¹

- ÿ�^	VXgofh`>U�fhgÆ[�bàgÆV�VXgÆaÉgÆYiU�n�g�� Ãw! ¼	U�b��]fhÿ�^_û�gÆnhû�Yi^_ûZ[�b�q
f�U%gÆb!VÊfhÿ!^�ûZ[�aÉü!YÆ^�fh^�`�b!gof�ý�U%VX^�ûZgonhûZYÆ^���\_[��éfhÿ�^�`!b�g��¨[�nhaÉYÆp�!gÆV�fXnhgÆý�`�fh^��1ü�[�gÆb�fhV�û�U%bÉý�^6��^�b�^�n�U�fh^��É[�b1fhÿ�^P��ÿ![�YÆ^Ñý�U%VX^
ûZgonhûZYÆ^�� - ÿ�gÆVHû�U%VX^MûZ[%nXnh^ZVXü�[%b���VHfh[lfhÿ�^(��^Zb!^�n�U�fhgÆ[�b*[��6��gÆq
nh^Zû�fhgÆ[%b�V.�¨[�YÆYÆ[���gÆb��çUî«|ûZ[%VXgÆb�^B�!gÆV�fXnhgÆý�`!fhgÆ[%b�¬ª��[%n9�!g�/Õ`�VX^
a]U�fh^�nhg U�YÆV��
®dö � ö�®ÕöNx í ø í ±�²�°�ú ø ½-ù ø ú �sð ± S ÿ î ñ�ú¨®Z°Z±�ú��ù#° í ñü ð ú ø °�®Éú ø ²*³�ú�±�³�ÿ í- [��%^Zb�^�n�U�fh^H`�b�g���[%nhaÉYop¤��gÆV�fXnhgiý!`!fh^��æü�[�gÆb�fhVÑgÆb�VXg3��^HU1ûZgonXq
ûZYÆ^�cM��^Mû�U%b5^Zgofhÿ�^�n	`�VX^ÉU�b*U�nh^�Uæü�nh^ZVX^�n"�mgÆb��la]U%ü�ü!gÆb��][��
fhÿ�^�V"��`>U�nh^v[�b�fh[Ñfhÿ!^vûZgonhûZYÆ^�c�[%n�U%ü!ü�Yop�nh^SE|^Zû�fhgÆ[�b1VhU�aÉü�YÆgÆb��&�T|bçnh^SE�^Zû�fhgi[%b×VhU%aÉü�YÆgÆb��<fhÿ!^/ü�[�gÆb�fhVàU�nh^B�%^Zb�^�n�U�fh^��NgÆb×U
V"��`>U�nh^1fhÿ>U�fH^�b�ûZYÆ[�VX^�Vjfhÿ!^1ûZgonhûZYÆ^lU%b��Ofhÿ�[%VX^Éü�[�gÆb�fhV	fhÿ>U�f
U�nh^�[%`!fhVXg3�!^	fhÿ!^	ûZgonhûZYÆ^jU�nh^�g���b![%nh^��M�

®Õö � ö ß ö�j ² S üÏÿ�ú ø ½éú ø ° Ì í ½ í ø í ±�²�ÿ�³�²�® íT�b<fhÿ�^æû�U%VX^ZVA�!gÆVXûZ`�VXVX^��ãVX[£��U�n�c�fhÿ!^9��[�a]U�gibÜ��ÿ!^�nh^æfhÿ!^
VhU�aÉü�YÆ^�ü�[�gÆb�fhV�U�nh^6��^Zb!^�n�U�fh^��s��U%V�U	ûZ[%aÉü�YÆ^�fh^�ûZgonhûZYÆ^ÑU%b��
fhÿ!^��%U%YÆ`�^�[*��fhÿ�^HU�Yiý�^��![s��U%VO¼���T�bæfhÿ!^���^Zb!^�n�U%YÔû�U%VX^�fhÿ!^¿sÀkµ ¸ Á Â"Ã�Ä nh^���gÆ[�bãgÆVMfhÿ�^æûZ[�aÉaÉ[%b-ü>U�nXf1[��ÑfS�v[�ûZgonhûZYÆ^ZV��- [ænh^�U�YigÆVX^ÉgÆaÉü�[%nXf�U�b�ûZ^MVhU%aÉü�YÆgÆb���cM��^Éÿ>U���^jfh[9�%^Zb�^�n�U�fh^
`!b�g��¨[�nhaÉYop9��gÆV�fXnhgiý!`!fh^��lü�[�gÆb�fhV�gÆb�VXg3�!^�fhÿ�gÆV�nh^��%gÆ[�b �
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² ú�½�ù#± í õ?y òzq ¿�È_À�Å ·¨¸�Ì]Ö�Á�µ�¸O¹�Á�µj¾�·¨ºX¾ZÅiµ�Ã	·�¸�¹�µ�º�ÃZµX¾�¹
- [_VX[�Y���^�fhÿ�gÆVÊü!nh[%ý�YÆ^Za¶c ºhµ{��µX¾�¹�·Ä»�¸æÃ�¿%ÈÑÀ�Å ·¨¸mÌ û�U�b1ý�^�U�ü!q

ü!YÆgi^����?Tsf�aÉ^�U�b�V�fhÿ�U�fv`�b�g���[%nha VhU�aÉü�YÆ^ZV�U�nh^'�%^Zb�^�n�U�fh^��]gib
[%b�^�[��Õfhÿ!^�ûZgonhûZYÆ^ZV�U%b��Efhÿ�^�bÉû�ÿ!^Zû$:�^��(��ÿ�^�fhÿ�^�n�[%n�b�[�f�fhÿ!^
[�fhÿ�^�nMûZgonhûZYÆ^¶ûZ[%bmf�U�gÆb�VMfhÿ!giVMVhU%aÉü�YÆ^��KTg�âgÆf��![�^ZV1b![%f�c¯fhÿ!^
VhU�aÉü�YÆ^	gÆV�nh^SE�^�û�fh^��¶U�b��¶UMb!^1� VhU%aÉü!Yi^_giV6�%^Zb�^�n�U�fh^����- [9nh^���`�ûZ^×fhÿ�^ bm`�aMý�^�nç[*��nh^yE�^Zû�fh^�� VhU�aÉü�YÆ^ZVZc1fhÿ!^
VXa]U�YÆYi^�n_ûZgonhûZYÆ^jgÆV��v[%nXfhÿOVX^ZYÆ^Zû�fhgÆb��lU�V_U���[�a]U%gÆb¤��[%n	VhU�a1q
ü!YÆ^G��^Zb!^�n�U�fhgÆ[%bÉU%b��Hfhÿ!^�ý�g����%^�n�U%V�fhÿ!^vnh^���gÆ[%b1[��>nh^yE�^Zû�fhgÆ[%b
VhU�aÉü�YÆgÆb��&�- ÿ!^£��[�YÆYÆ[���gib �éVX`�ý!nh[%`!fhgÆb�^¤��b���V]U%bC´ VhU�aÉü�YÆ^¤��nh[%a��gonh^Zû�fhgÆ[�b¢µë`�VXgÆb �1UEý�U%VXgÆû �
	��� [*�¯ü>U�n�U%aÉ^�fh^�n Ã c!U%b��
U�YÆVX[<ü!nh[��mg3�!^ZV1fhÿ!^¶U%YÆý�^���[*fh[B�v^Zg���ÿ�f]fhÿ�^ln�U��!giU�b�ûZ^/[%ý!q
f�U�gÆb�^��l`�VXgÆb�����gonh^Zû�fhgÆ[�bD´6³
t�|����~}>��£vuh}�uhy�x�z�u�t��oy|uh�Xz|�o~�}���� z����¯xZ�|�o���¯¥�t
à¯�káPâ$ã.âyä»âSå¯�ã ¸ Á çéì ��ã ì ��äîí"ã1�Uä1�
� ~���}�� ç ��¥¯���õ$ó��Mó�� òï3ð á��*�Gò æ�ó�ô

£vuh}�uhy�x�z�u�w�~��o}�z+å Á �o}��Ñ��ã ¸Á â!á��ï3ð å Á �o��~��%z|���o��ur�Ñ���sâ����oò æ�ó�ô � ~���}�� ç à�¤�}��%�ó�ø�ù"ó
£vuh}�uhy�x�z�u�w�~��o}�z+å Á �o}��Ñ���sâ����ï3ð å Á �o��~��%z|���o��ur�Ñ��ã ¸Á â!á��Ïò æ�ó�ô � ~���}�� ç à�¤�}��%�ó�ô�û ï3ðö ô ò ï ø � ~���}��å ç å Á è t � ì �aå Á í�å Á �Mí�ä� ç �Ñ��ã ¸Á â!áv���%�{�Aíh{��o}�����â!á , �s�õ$ó ò�ö õ�ô �ó�ô�û

®Õö � ö � ö�j ² S üÏÿ�ú ø ½ ï ú�° Ì ° ù�®�®�ú�² ø ± ð ù)ÿ í °Z° í
T�b�fhÿ�^vûZU%VX^�[���ÿ�g���ÿ!Yopjnh^$0>^Zû�fhg���^�a]U�fh^�nhgiU�YiV Ã gÆV¯VXa]U%YÆY�U%b��
fhÿm`!VÏ¿sÀkµ9¸Á Â�Ã�Ä gÆV�f|p�ü!giûZU%YÆYopjUâûZ[%aÉü�YÆ^�fh^�ûZgonhûZYÆ^�� - ÿ�^�ûZ[%a1q

VWCX�Z�[)\?^�_a`�b�_ac�d�Z1e Vgfihifaf ` V e c!jke `�l # N�N�N



� �����'������� � ���%���������)���"� �X�'�����a����� ���Ï���Ê�a�Ê�!���k���������l������� �����3�����i���!� ���v�%�����k�������'� ���v�m� �i��¡ �
ü�`�f�U�fhgÆ[�bÉ[*�Ôfhÿ!^�ûZ[�aÉaÉ[%b1ü>U�nXfv[*�Ôfy��[HûZgonhûZYÆ^ZV�gÆV�nh^��m`!gonh^��
[�b!Yop¶U�f�fhÿ�^�a]U�n"�%gÆb�V�� [%nH[�fhÿ�^�nHa]U�fh^�nhgiU%YÆVZc#fXnh`!b�û�U�fhgi[%b*[*��fhÿ�^1û�gÆnhû�Yi^�VEaE`�V�f
ý�^/ûZ[%b�VXg3�!^�nh^��3VX^���^�n�U�YâfhgÆaÉ^ZV��+<_[��v^���^�n�c�g�����^/`!VX^¶fhÿ�^	 `�VXVXgiU%bãnh[�`�YÆ^�fXfh^%c+�v^/ÿ>U���^æfh[�û�ÿ!^Zû�:ã[%b�Yop=��ÿ�^�fhÿ!^�n][%n
b�[�f1fhÿ�^æü�[�gÆb�fhV]U�nh^¶gÆb!VXg���^àfhÿ�^æûZgonhûZYÆ^�c�fhÿ�^¶U�YÆý�^��![éÀ¨fhÿ�^
U�nh^ZUé[*�Hfhÿ�^/ûZ[%aÉaÉ[�bNü�U�nXf Ä VXÿ�[%`�Y3�Nb�[�fàý�^OûZ[%aÉü�`!fh^��
^1@�ü�YÆgÆûZgofhYop?� S ^�f

¿ �Ïe l Àkµ ¸ Á Â"Ã�ÄØÇ Ù ¿sÀkµ ¸ Á Â"Ã�Ä$Â g�� Ãk� ¼ Â
¿sÀyÅ Â ¼ Ä$Â [%fhÿ�^�n���giVX^ Ý À!¼R� Ä

S ^�f�`!V���^�b�^�n�U�fh^1gÆb�fhÿ�^A¿ �Ïe l Àkµ9¸Á Â�Ã�Ä nh^��%gi[%b*^1@!U�û�fhYopf `�b�g���[%nhaÉYop¢�!gÆV�fXnhgÆý�`!fh^��9Ô � ü�[�gÆb�fhV���\Ñ[���c�fhÿ!^'��^�g3�%ÿ�fXq
gÆb��A�¨U%û�fh[�n_[*�6ÀU´ h Ä Á À�l Ç ¼ Â�Ý�Ý�Ý�Â f Ä ��gÆYÆY�ý�^OÒ1[%n�¼�À�gk� ^��
U%û�ûZ^Zü!fh^��æ[%n�nh^yE�^Zû�fh^�� Ä U%ûZû�[%n��!gÆb �Mfh[(��ÿ!^�fhÿ�^�n�[�n�b�[�f�fhÿ�^
ü�[�gÆb�f�gÆV�gÆb�VXg3�!^_fhÿ!^¤«|[�fhÿ�^�n�û�gÆnhû�Yi^1¬Mfh[�[ � - ÿ�^�U�ü�ü�nh[�@�gÆa]U�q
fhgÆ[�b¶[*��fhÿ�^�ÿ�U%Y���qsVXü�U%ûZ^�gÆb�fh^��%n�U�Y#gÆV�³Y `�^1j Àkµ ÄKÇ _�`bY e l ÀU´ Ädcre ¼f Í [g hTi # Y e l ÀU´ h Ä$Â À!¼R, Ä
��ÿ�^�nh^M[�b!Yop¶fhÿ�^MU%ûZûZ^�ü!fh^��/ü�[�gÆb�fhV�U�nh^MûZ[%b�VXg3�!^�nh^��5gÆbOfhÿ�^
VX`�a¶c�fhÿ�U�f�gÆVZc���ÿ!gÆû�ÿæÿ>U���^	U���^Zg���ÿ�fhgÆb��(��U%û�fh[%nÑ[��G¼�� - ÿ!giV
aÉ^�U�b�V	fhÿ>U�f�fhÿ�^1bm`!aMý�^�n_[���fh^�nhaÉV	ûZU%b<ý�^ÉU�fjaÉ[�V�f f c
ý�`�f1gÆV1[*��fh^ZbéYÆ^ZVXV�� - ÿ�gÆV1aÉ^�fhÿ![��-giVMVX[�aÉ^1��ÿ�U�f1VXgÆaÉü!Yi^�n�c
ý�`�fâgÆfhV��%U�nhgiU%b!ûZ^HgiVâb�[�f�fhÿ�^�ü�[�VXVXgÆý!Yi^jaÉgÆb�gÆaM`!a:ý�^Zû�U�`�VX^
gof���[�^ZV_b![%fÑû�U�nXnXp¶[�`!fâfhÿ�^H^1@!U�û�f_gÆaÉü�[�nXf�U%b�û�^jVhU�aÉü�YÆgÆb��&�- ÿ�^O��^�g3�%ÿ�f'��U�û�fh[%nhV�[*�Êfhÿ�^H^ZYÆ^ZaÉ^Zb�f�U�nXpæn�UZp!V_U�nh^(ÒÉ[%nA¼%c
[�b!Yop	fhÿ�^Zgon#^1@�ü�^Zû�fh^����%U%YÆ`�^�gÆV�^���`>U�Y�fh[�fhÿ�^ � � Àkµ Ä U%YÆý�^��![&�- ÿ�^ U�Y3�%[%nhgofhÿ�a fhÿ>U�f=�%^Zb�^�n�U�fh^ZV-^Zgofhÿ!^�n �!gonh^Zû�fhgÆ[%b ´��nh[%a �!gonh^Zû�fhgÆ[�bÜµ5c�[�nEnh^Zü�[�nXfhVjfhÿ�U�fHfhÿ�^ÉVhU�aÉü�YÆ^ÉVXÿ�[%`�Y3�
ý�^	nh^SE|^Zû�fh^��àý�pÉnh^�fh`�nhb�gÆb��1UMWZ^�nh[A�%U%YÆ`!^�giV�fhÿ!^'�¨[%YiYÆ[���gÆb��&³
�D|�|B}¶£vuh}�uhy�x�z�u�tv�oy|uh�Xz��o~�}��*� z����¯xZ���o���¯¥�t
à¯�aá6â"ã.â!ä.â!å¯�ã ¸ Á çéì ��ã ì �aä í"ãM�Uä1�ï�ð á��<�Gò æ�ó�ô

£vuh}�uhy�x�z�u�wm~��o}�z+å Á �o}��Ñ��ã ¸Á âSáv�ï�ð å Á �o��~��%z|���o��u'�Ñ���sâ����)ò æ�ó�ôBõ1ó ò�ö õ�ôDúó�ø�ù"ó
£vuh}�uhy�x�z�u�wm~��o}�z+å Á �o}��Ñ���sâ����ï�ð å ¸ Á �o��~��%z|���o��u'�Ñ��ã ¸Á âSáv�oò æ�ó�ô7õ$ó ò�ö õ�ô£úó�ô�û ï3ðå ç å Á è t � ì ��å Á í�å Á �Mí�äõ1ó ò�ö õ�ô �ó�ô�û

ß ö�@ ú{�Ô°Zù#± í5ð*� �²�®�ú¨³ ¯(°»±¢² ®ß ö�õ>ö�x í ø í ±�²�ÿ�ñ í ®�³�±�ú�ü�°Zú ð ø- ÿ�^jý>U�VXgÆû �
	��� gÆVÑb�[%f	U1nh^�U%YÆgÆV�fhgÆû1a]U�fh^�nhgiU�Y¯aÉ[��!^ZYÔýmp
gofhVX^ZY��|cmý!`!f�[�b�Yop1UHa]U�fhÿ�^Za]U�fhgÆû�U%Y�ûZ[�b!V�fXnh`�û�fhgÆ[%blVXgÆb!ûZ^ÑgofvgiV�!gÆVXûZ[%b�fhgibm`![�`�VPÀa����`�nh^+� Ä � - ÿ�^�nh^1��[%nh^G�v^�gib�fh^Zb��jfh[	û�nh^�U�fh^

² ú�½>ù#± í õ�õ ò ó*µ�¹s¿%Å¨Å ·Ä¾ ÃÄÀ!Á!µ�ºhµ�Ã3Ì�µ�¸Õµ�º�¿%¹�µX¼:Ç�Â ó�»%¸!¹�µ�Ø
ô�¿�º�ÅÆ»æº�¿%Âl¹�ºX¿�¾�·¨¸�ÌàÖ�·�¹�ÁZ���lÃ�¿%ÈÑÀ�Åiµ�ÃÑÀ!µ�ºÑÀ>·iÞ�µ�Å\3Ä¹s»�ÀdßÊ·¨È1Ø
À�»�º�¹s¿%¸>¾�µlÃ�¿%È_À�Å ·�¸mÌ�¿�¾�¾h»%º�¼%·¨¸�Ì5¹s»O¹�Á!µæ¾h»%Ãh·¨¸Õµæ¿%¸mÌ�Åiµl»%¸>Å Â3d���¶ÈM·�¸ 5R� ÈE·Ä¼�¼�Åiµ�ß�Î�½�ÃhÃh·Ä¿%¸ãºX»�½!Åiµ�¹�¹�µ¶Çh¿%Ã�µX¼5·�È_À�»%º�¹s¿%¸�¾�µ
Ã�¿%ÈÑÀ�Å ·¨¸�Ìã»�Ë/Ã�µX¾�¹�·Ä»%¸���Ò ��Ò �:3����éÈE·¨¸ 5R� Çh»%¹�¹s»%ÈÉßH¸�»�º�È1¿�Å
·�È_À�»%º�¹s¿%¸�¾�µjÃ�¿%ÈÑÀ�Å ·¨¸�Ìl»�Ë	Ã�µX¾�¹�·Ä»%¸0��Ò ��Òb��3d�T�/ÈM·�¸ 5
nh^ZU%Y �+	��� Vl`�VXgÆb �-U<aÉg�@�fh`�nh^¶[��Hfhÿ!^/ý>U%VXgÆûO[�b!^ZV�� S ^�f
fhÿ!^��v^Zg���ÿ�fhgÆb��(��`�b!û�fhgÆ[�bàý�^B�oÀ Ã�Ä fhÿ�U�f�gÆV�^1@�ü�^Zû�fh^��]fh[Eý�^«�b�[�nha]U%YÆgÆVX^�� ¬¤À� ]�oÀ Ã�Ä���ÃCÇ ¼ Ä �- ÿ!^ ÈM·iÞ%¹�½mºhµ	Í�Î�ÏÑÐ gÆV�fhÿ�^Zb�³

Õ × ÀU´ Â µ ÄKÇ ,�
J
�)À Ã�Ä Í ÕMÖ× À Ã(Â ´ Â µ ÄB��Ã(Ý ÀgÔ*Ò Ä

H*^Zg���ÿ�fhgÆb��4�¨`!b�û�fhgÆ[%b��)À Ã�Ä û�U%bQý�^éûZ[%b�VXg3�!^�nh^��9U%V�U
ü�nh[�ý�U%ý�gÆYÆgof|pË��^Zb�VXgof�pî�¨`!b�û�fhgÆ[%b [*�à[%b�^ ��U�nhgiU%ý�YÆ^çgibQfhÿ!^Ò�Ó Ã Ó¶ÔEgÆb�fh^�n"�%U%Yk�- ÿ!^<aÉg�@�fh`�nh^ �
	��� V/^��mg3�!^�bmfhYop×aÉ^Z^�f¶fhÿ�^5nh^���`�gonh^�q
aÉ^�bmfhVÑ[���nh^ZûZgÆü!nh[�ûZgof�p*U�b��5^Zb�^�n"��pOûZ[�b!VX^�n"�%U�fhgÆ[�b��¯km[lfhÿ!^�+	��� V�U�nh^�ü!ÿmp�VXgÆû�U�YiYopHü!Y U�`�VXgÆý�YÆ^�aÉ[���^ZYÆV¯g���fhÿ�^�gÆno��U�Yi`!^vgÆV

VW¦X�Z�[)\�^1_a`�b�_ac�d�Z�e Vyfihif�f ` V e c!jae `�l # N�N�N



¡ � ������������� � ���%���������)���"� �X�'�����a����� ���K���Ê�k�¯�!���k�������6�l������� �����3���������!� ���v�%�����k��������� ���v�m� �i��¡
b�[%b!qsb�^1��U�fhg���^��me VX` ÉûZgÆ^Zb�fvý�`!f�b�[�f�b!^ZûZ^ZVXVhU�nXp]ûZ[�b��!gofhgÆ[�b
gÆV�fhÿ>U�f�fhÿ!^'��^Zg��%ÿmfhgÆb �A�¨`�b!û�fhgÆ[�bægiVâb�[%b!qsb�^1��U�fhg���^��- ÿ�^HVXgÆb���`!YiU�nhgofhgÆ^ZV	[�� � gÆn�U�û�qy�!^ZYof�U1f|p�ü�^�û�U�VX^ZV_aE`�V�f�ý�^
^1@!U%aÉgÆb!^��	VX^Zü>U�n�U�fh^ZYop�c�b�U%aÉ^ZYop���ÿ�^Zb�fhÿ�^�gÆb�fh^��%n�U�Y�[��;�oÀ Ã�Ä
gÆbàfhÿ�^Ñnh^ZVXü�^Zû�fhg���^�ü�[%gib�f�gÆVÑU(�>b!gÆfh^%c!b![�b�q�W�^�nh[A�%U%YÆ`�^�c�U%b���oÀ Ã�Ä gÆV.«|gÆb&�>b�gofh^�¬&�- ��[æf�p�ü�^ZV	[��vVXgÆb���`!YiU�nhgofhgÆ^ZVjU�nh^1gÆaÉü�[%nXf�U�b�f	gÆb �
	���
aÉ[��!^�YiYÆgÆb��&� - ÿ�^ Ã]Ç Ò/û�U�VX^æûZ[�nXnh^ZVXü�[�b��!Vjfh[�U/VXü�^Zû�g U�Y
g3�!^�U�Y¯aÉgonXnh[%n�cdU%b�� ÃÉÇ ÔÉû�[%nXnh^ZVXü�[%b��!V	fh[Éfhÿ!^Eg3�!^ZU%YK�!g�� q�¨`!VX^�aÉ[��!^ZYk�>k�^Zü�U�n�U�fhgib �Mfhÿ�^�VX^�c �v^�ÿ>U���^�³,�
J
�oÀ Ã�Ä���ÃCÇ � � e _�_a`�_ ÐE��¢ e £�^ f [ Ð , V J�¤ J �oÀ Ã�Ä¥��Ã¦Ç ¼éÀgÔ�¼ Ä

ß ö�®dö ¬¢ÿ� í ñ ð��sð ±]²ª½>ú�þ í ø �oÀ Ã�Ä � ù ø ³�°�ú ð ø
k�gÆb!ûZ^HaÉg�@�gÆb��ÉgÆV_U1YigÆb!^�U�n�[%ü�^�n�U�fhgÆ[%bÔc>fhÿ!^EU�YÆý�^��![ �^¦ U%b��
fhÿ�^jaÉ^�U�b�U�YÆý�^��![ �^¦ �Ï[yc�l [���fhÿ�^jaÉg�@�fh`�nh^ �
	��� û�U%bOý�^
ûZ[%aÉü�`!fh^��æU�V6��[�YÆYÆ[���V�³� ¦ ÀU´ ÄØÇ ,�

J
�oÀ Ã�Ä Í �*� ÀU´ Ä\��Ã(Â ÀgÔ�Ô Ä

� ¦ �Ï[yc�l Ç ,�
J
�oÀ Ã�Ä Í�À �*� Ä �Ï[gc�l ��Ã�Ý ÀgÔ�� Ä

eÑûZûZ[�n��!gÆb��Ofh[O^���`>U�fhgi[%b ÀgÔ?¼ Ä ��[%n1fhÿ!^àU�YÆý�^��![%V1[��Ñfhÿ�^
aÉgonXnh[%nâU�b��à[*��fhÿ�^ S U%aMý�^�nXfhg U�bàaÉ[���^ZY�c&�v^�ÿ>U���^�³� � e _�_a`�_ Ç � � e _a_a`�_ Â � ¢ e £�^ f [ Ç ��¢ e £�^ f [ Ý ÀgÔ; Ä� ö�@ ð ñ#ú�§ í ñNú S ü ð ±�°Z² ø ³ í ®Z² S üÏÿ�ú ø ½ �sð ±]²ª½�ú�þ í ø�)À Ã�Ä� ö�õ>ö�° í ñ�ù#³�ú ø ½<° Ì í ½ í ø í ±�²�ÿ�³�²�® í ° ð �²�®�ú¨³¯s°.±9² ®¨ VXgÆb ��^���`>U�fhgÆ[%b�V�À!¼�Ô Ä U%b�� ÀgÔ�Ò Ä c���^�fXn�U%b!V!�¨[�nha fhÿ!^�ÿ>U%Y�� q
VXü>U�ûZ^HgÆbmfh^1�%n�U%YÔgÆbmfh[]U���[�`!ý�YÆ^�gÆbmfh^1�%n�U%Y#U%b��æfhÿ�^Zbænh^���^�nhVX^
fhÿ�^_[%n��!^�nÑ[*�ÊgÆbmfh^1�%n�U�fhgÆ[%b ³Y `�^1j Àkµ ÄKÇ � � Y e l ÀU´ Ä Õ × ÀU´ Â µ Ä ÀU· Í�´ Ä\���DC»Ç
�� Y e l ÀU´ Ä ÍO¨© ,�

J
�)À Ã�Ä ÕMÖ× À Ã(Â ´ Â µ ÄB��Ã'ª« ÀU·ÎÍ�´ ÄB���zC9Ç

,�
J
�oÀ Ã�Ä ÍO¨© �� Y e l ÀU´ Ä Õ Ö× À Ã(Â ´ Â µ Ä ÀU· Í�´ Ä���� C ª«¬��Ã¦Ç

,�
J
�oÀ Ã�Ä ÍRY `�^1j� Àkµ ÄB��Ã(Ý ÀgÔ�� Ä

- ÿ!giV gib�fh^���n�U%Y<gÆVQU�ü�ü�nh[�@�gÆa]U�fh^��ëý�p U4VX`�a@`�VXgÆb �Rà[%b�fh^�qS8�U�nhYÆ[¶��`�U���n�U�fh`!nh^��  [%n¶fhÿ!^�ûZU%YÆûZ`�YiU�fhgi[%b [*�Efhÿ!^
nh^��m`!gonh^�� Ã h ��U�Yi`!^ZVZc��v^�U%ü!ü�YopMgÆaÉü�[�nXf�U%b�û�^�VhU%aÉü�YÆgÆb��HU�û�q
û�[%n��!gÆb �lfh[]fhÿ�^r�oÀ Ã�Ä �¨`�b!û�fhgÆ[�b�� ¨ VXgÆb��]fhÿ�^EU%ü�ü�nh[�@!gÆa]U�fh^�%U%YÆ`!^	[���fhÿ!^�gÆbmfh^1�%n�U%YØÀ!¼�Ô Ä c��v^�ÿ>U���^�³Y `�^1j Àkµ ÄØÇ ,�

J
�oÀ Ã�Ä ÍTY `�^1j� Àkµ ÄB��Ãue ¼f Í [g h6i # Y e l�� Àkµ Ä$Â

ÀgÔ;� Ä
VXgÆaÉgÆYiU�nhYop×fh[ç^��m`�U�fhgÆ[�b ÀgÔ�� Ä c���gofhÿ fhÿ�^*^$@!û�^Zü!fhgÆ[�b×fhÿ>U�f
ÿ!^�nh^1^�U�û�ÿ�gÆb�ûZ[%aÉgib �¤��gÆnh^�û�fhgÆ[�b<gÆV	nh^Zü�nh^ZVX^Zb�fh^���ý�p5U¤��g���q��^�nh^Zb�f�n�U���gÆ`�V Ã h �
S ^�f¯fhÿ�^�ûZ`�aE`�YiU�fhg���^�ü!nh[%ý>U%ý!gÆYigof�ps��gÆV�fXnhgiý!`!fhgÆ[�b��¨`!b�û�fhgÆ[�b

[*���¶ý�^	fhÿ!^'�¨[%YiYÆ[���gÆb����¨`!b�û�fhgÆ[%b ³® À Ã�ÄÏÇ ��
J
�oÀ #�ÄB�^#1Â ÀUÒsÓ Ã Ó¶Ô Â Ò(Ó ® À Ã�Ä Ó¦¼ Ä$Ý

ÀgÔ�� ÄT�bHü!n�U%û�fhgiû�^�c���^va]UZp_û�U%YÆûZ`!Y U�fh^ ® gÆbEUâûZYÆ[%VX^�����[%nha¶c�[%n�`�V�q
gÆb ��b�`!aÉ^�nhgÆû�U%Y!aÉ^�fhÿ�[���V���T�aÉü�[%nXf�U%b!ûZ^�VhU%aÉü!YigÆb �Hnh^��m`!gonh^ZV
fhÿ!^ægÆb���^�nhVX^l[�� ® co��ÿ!giû�ÿãgiVE`�VX`�U%YÆYopéûZ[�aÉü!`!fh^��<bm`�aÉ^�nXq
gÆû�U�YÆYÆp3U%b��ãfhÿ!^ành^ZVX`�YofhgÆb��Ü�%U%YÆ`!^ZV]U�nh^/V�fh[�nh^��3gÆbNU*VX`&1q
û�gi^�bmfhYoplYiU�n"�%^j[%b�^�qy��giaÉ^�b�VXgÆ[�b�U%YÔU�nXn�UZp?�- ÿ!^HU%Y���[�nhgÆfhÿ!a+[��K��^�b�^�n�U�fhgib �]UA�!gonh^Zû�fhgi[%bD´çfh[���gonh^Zû�q
fhgÆ[%b9µ gÆVâU%VP�¨[%YÆYi[���V�³
�D|�|B}¶£vu�}�u�y|x�z|u�tv�oy�uh�hz��o~�}���� z|���1� ¯%z���y|u��¯¥�t
à¯��ã.â"ä.â!å¯�
£vuh}�uhy�x�z�uÑxÑy�xZ}���~�{L�ZxZ�o��u+°Ñ�o}�± ú âh�X²á ç�³ V # ��°��õ1ó ò�ö õ�ô £vuh}�uhy|x�z|u�tv�oy�u��Xz��o~�}���� z|���¯xZ���o���¯¥�t
à¯�aá6â"ã.â!ä.âyå¯�ó�ô�û

/ öNx í ø í ±�²�ÿ¨ú¨®Z²!°�ú ð ø ð*� ° Ì í #²>®�ú¨³ ¯(°.±9²/ ö�õ>ö�x í ø í ±�²�ÿ�ú¨®Z²�°�ú ð ø ð&� ° Ì í ´�´ ´ ¸ S ú ±�± ð ±�ú ø ½°Z±�² ø ® ��ð ± S ²�°�ú ð ø- ÿ!^�´ ¸ ��^Zû�fh[�n�gÆbD�!^1��b�gofhgÆ[�bBÀgÔ Ä ��U�V�[�ý!f�U�gÆb�^��¢� nh[�a:fhÿ!^
[�nhg���gÆb>U�YP´î��^Zû�fh[%nEýmp5aÉgonXnh[%nhgÆb � �oT�b�V�fh^�U��*[���aÉgonXnh[�nhgib �!c
ý�U%VXgÆû �
	��� VMû�U�b-ý�^9��^1�>b!^��<`�VXgÆb��O[�fhÿ�^�ns´8´¶µ(ÀU´ Ä
fXn�U�b�V!��[%nha]U�fhgÆ[%b�V�fh[�[ � - [A�¨`!Y���Ydfhÿ!^	nh^���`�gonh^ZaÉ^Zb�f�[*�¯nh^ZûZgoq
ü�nh[�ûZgof|p�c�fhÿ!^0µ�ÀU´ Ä fXn�U�b�V!�¨[�nha]U�fhgÆ[�b ÿ>U�Vàfh[ãVhU�fhgÆV!��p fhÿ!^��[�YÆYÆ[���gib �]g���^Zb�fhgof|pM³ µ�À)µ�ÀU´ Ä�ÄÏÇ ´ Ý ÀgÔ;� Ä
- ÿ!giVÊnh^���`�gonh^ZaÉ^�bmf#gÆV�VhU�fhgiV!��^��Mý�pHaÉgonXnh[%nhgÆb��_VXgib!ûZ^�aÉgonXq

nh[�nhgÆb��Mfy��[MfhgÆaÉ^ZVP�%g3��^ZV�ý>U%û�:]fhÿ�^	[�nhg3�%gÆb>U%YÔü�[�gÆb�f��
VWCX�Z�[)\?^�_a`�b�_ac�d�Z1e Vgfihifaf ` V e c!jke `�l # N�N�N



� �����'������� � ���%���������)���"� �X�'�����a����� ���Ï���Ê�a�Ê�!���k���������l������� �����3�����i���!� ���v�%�����k�������'� ���v�m� �i��¡ ·
eÑb�[�fhÿ�^�nâfXnhg��mg U�Y�fXn�U%b!V!�¨[%nha]U�fhgÆ[�b5giVÑfhÿ�^Hg3�!^Zb�fhgof|p�c!fhÿ>U�f

gÆV�µ(ÀU´ ÄKÇ ´6�/ ö�®döA¸ Ì í ± í °Z± ð*¹ ± í�º¯í ³�°Zú�þ í S ð ñ í ÿ [�n�fhÿ!^\µ(ÀU´ ÄÏÇ ´*fXn�U%b�V!��[%nha]U�fhgi[%bÔc�fhÿ!^PÆªÀU´ Â µ Ä aÉ^�fXnhgÆû��nh[%a§�!^1��b�gofhgÆ[�b¥ÀgÔ Ä ý�^ZûZ[�aÉ^�V�³ÆBÀU´ Â µ ÄØÇÉÈ ´ Á Ê µ Á È�ÇÉÈ ½ Ê ÀU· Í ½ Ä · È Â ÀgÔ�, Ä
��ÿ�^�nh^ ½ Ç ´ Ê µB�  [%nEVX`�û�ÿ<aÉ[���^ZYÆVZc#fhÿ�^1n�U��!giU%b!ûZ^][��
fhÿ�^Ñnh^10>^Zû�fh^��æYÆg���ÿ�fâgÆVâa]U�@�giaE`�a gÆbàfhÿ�^	gÆb!ûZg3�!^Zb!ûZ^��!gonh^Zû�q
fhgÆ[�b�� - ÿ!gÆVlaÉ[���^ZY�gÆV]û�U%YÆYÆ^��ãfhÿ!^ ºhµ�¹�º�»�ØÄºhµ¨á�µX¾�¹�·¨Ü%µ�ÈÉ»�¼�µ�Å �T|bãü!n�U�û�fhgÆûZ^�c�a]U�fh^�nhgiU�YiVÉ^$@!ÿ!gÆý�gofhgÆb��*VX`!û�ÿãü!nh[%ü�^�nXfhgÆ^ZVlU�nh^
fhÿ�^æý�^�U���^��éVXû�nh^Z^Zb!V1[%nÉfhÿ!^æVXg���b�U%Yâü>U�gib�fhV1`!VX^��é[�béfhÿ�^
ÿ�g��%ÿ���UZp!V�� - ÿ!^àa]U�n"��gÆb>U�Y�û�U%VX^ZVÉ[*�_fhÿ!giVjnh^�fXnh[%qÄnh^10�^Zû�fhg���^
aÉ[��!^�Y�U�nh^1fhÿ�[%VX^ÉaÉgÆnXnh[�nXqsûZ[�b!V�fXnh`�û�fhgÆ[�b!V���ÿ�gÆû�ÿ-U�nh^1`!VX^��
gÆb×Y U�VX^�nXqsý>U�VX^��×fh^�Yi^�aÉ^�fh^�nhVæfhÿ�U�fæý�^Zÿ>U���^5ü!n�U�û�fhgÆû�U%YÆYop U%V
g3�!^�U�Y�aÉgonXnh[%nhVZcmý�`�f�nh^$0>^Zû�fv^1@!U%û�fhYopÉgÆb]fhÿ�^�gÆb�ûZg3��^Zb�fP�!gonh^Zû�q
fhgÆ[�b��/ ö ß ö�x í ø í ±�²�ÿ¨ú¨®Z²!°�ú ð ø ð&� ° Ì í S í °Z±�ú¨³T|bA�!^1��b�gofhgÆ[�bDÀgÔ Ä fhÿ!^�ÆBÀU´ Â µ Ä aÉ^�fXnhgÆûG��U%VvU%b J `�ûZYÆg3�!^ZU%b�!gÆV�f�U�b�ûZ^ægibéfhÿ�^lü!nh[�E�^�û�fhgÆ[�b3ü!YiU%b�^�� - ÿ�^àaÉ^�fXnhgiûlû�U�bçý�^��^�b�^�n�U�YigÆVX^��/U�VP�¨[�YÆYÆ[���V�³ÆªÀU´ Â µ ÄØÇÉÈ�È µ Â µ�ÀU´ Ä�È�È Ý À���Ò Ä
T|b ^���`>U�fhgÆ[%b À���Ò ÄÜÈ3È Í Â Í È�È gÆVOU%b�U�nhý�gofXn�U�nXpLaÉ^�fXnhgiû7�¨[�n

fS�v[�`�b!gÆfK��^Zû�fh[%nhVÊ[%b1fhÿ�^�ÿ!^ZaÉgÆVXü�ÿ�^�nh^��  [%nÊfhÿ�^ J `�ûZYÆg3�!^ZU%b
aÉ^�fXnhgÆû�[�b1fhÿ!^�ý>U%VX^�ü!Y U�b�^âU%b��(�¨[�n�ý�U%VXgÆû �+	��� VØ��^1�>b!^��
gÆb¶^���`>U�fhgÆ[�bªÀgÔ Ä c �v^�ÿ>U���^�³È�È µ Â µ�ÀU´ Ä�È�È�ÇËÈ µ Á£Ê µ�ÀU´ Ä Á È Ý À��&¼ Ä/ ö � ö ¬ ø ú�® ð °Z± ð ü¯ú¨³ S ð ñ í ÿ¨®- ÿ�^�`!VX^�[���U�b�gÆVX[%fXnh[%ü�gÆûHaÉ[��!^ZYÆV�û�U%bæ[�� fh^Zb/VX`�ý!V�f�U%b�fhgiU%YÆYop
gÆaÉü!nh[���^�nh^�U%YÆgÆVXa4gÆbænh^Zb��!^�nhgÆb �!c�^ZVXü�^ZûZgiU�YiYoplgÆbæfhÿ!^_û�U�VX^	[��
aÉ^�f�U�YiV"F1©�,!J��  [�nhaM`�YiU À��&¼ Ä ü!nh[��mg3�!^ZVÉ`!VX^1�¨`!Y'�%^Zb�^�n�U�YÆgiVhU�q
fhgÆ[�b1ü�[%VXVXgÆý�gÆYÆgÆfhgÆ^ZVØ�¨[�nvü�n�U%û�fhgÆûZ^�� ¨ VXgÆb��	U%b¥«�^ZYÆYigÆü�fhgiûâb�[�nha�¬
[�b-fhÿ!^lý�U%VX^lü�YiU%b!^�cÊU�b�gÆVX[%fXnh[%ü�gÆû �
	��� VMU�nh^l[�ý!f�U�gÆb�^��M�
S ^�f1`�Vs�!^1��b�^lU%bé[�nXfhÿ�[�b![%nha]U�Y�ûZ[%qs[�n��!gÆb>U�fh^àV�p�V�fh^Za [�b
fhÿ�^�VX`�n���U�ûZ^H^ZYÆ^ZaÉ^Zb�f�nh^Zü!nh^ZVX^�bmfhgÆb �Mfhÿ�^��%g3��^Zb �
	��� c!ýmp
ûZ[%b�VXg3�!^�nhgÆb �Ofhÿ!^DÀ ù Â þ Ä ��^�û�fh[%nhVO��ÿ�gÆû�ÿéU�nh^]ü�^�nhü�^Zb��!gÆûZ`!q
YiU�n�fh[�^�U%û�ÿÉ[%fhÿ!^�nvU%b��Mfh[	fhÿ!^6·4`�b�gof�b�[�nha]U%Y&��^Zû�fh[�n�fh[�[&�- ÿ�^�aÉ^�fXnhgiû'Æëû�U�b¶ý�^O�!^1��b�^��lU%VP��[�YÆYÆ[���V�³

ÆªÀU´ Â µ ÄKÇ:» ¼
½¾ Í?À�¿�Í ù ÄLÀ , Ð4À�¿�Í þ Ä , Â À���Ô Ä
��ÿ�^�nh^¬¿ Ç µ Á Ê µ�ÀU´ Ä Á U%b�� ½ P ¾ Ó¹¼àgÆV]fhÿ!^àn�U�fhgÆ[
[���fhÿ�^EU*@�^ZV	[*�vfhÿ!^E^ZYÆYÆgÆü�VX^�cÔU�b��/fhÿ�^ja]U�E|[%njU%b��¶fhÿ�^jaÉgÆq
b�[�nEU*@�gÆVj[*��fhÿ�^M^ZYÆYigÆü!VX^æU�nh^1f�U�:�^�b<U%YÆ[%b��¤��^�û�fh[%nhV ù U%b��þ c�nh^�VXü�^Zû�fhg���^ZYop?� - ÿ!giV_aÉ^�fXnhgÆû(Æ ûZ[�b�fXn�U�û�fhV_fhÿ�^(�!gÆV�f�U�b�ûZ^
ûZ[%aÉü�[�b�^�bmf	U%YÆ[�b �9��^�û�fh[%n ù ��HNÿ�^Zb ½ P ¾ Ç ¼�cM��^Mÿ>U���^
fhÿ�^_VhU%aÉ^�û�U�VX^HU%Vâgibæ^���`>U�fhgi[%b¥À!¼ Ä �

S ^�fz_�ÀdÁ Â þ ÂLÂ�Ä ��^Zb�[�fh^�fhÿ!^�û�[�aÉaÉ[�b_ü>U�nXf#[���fhÿ�^�^ZYÆYÆgiü!VX^��gofhÿlûZ^Zb�fXnh^âgibÃÁæc���gÆfhÿæUHaÉgib![%n�U*@�gÆV�[��#Yi^�b��%fhÿ Â U%b��l[*�
fhÿ!^	`�b!gof�ý>U%VX^�û�gÆnhû�Yi^���T|blfhÿ�gÆV�û�U%VX^�³

µ Á Û _�ÀU´ ¸ Á Â þ ÂXÂ�ÄDÄ4Å ´ ¸ Á Û _�Àkµ ¸Á Â þ ÂXÂ�Ä$Â À���� Ä
��ÿ!gÆû�ÿÉaÉ^�U�b�V¯fhÿ>U�f�fhÿ!^�aÉ[��!^ZY!aÉ^Z^�fhVÊfhÿ�^�nh^���`�gonh^ZaÉ^�bmf�[*�
nh^�ûZgÆü!nh[�ûZgof|p?�- ÿ!^�a]U*@�gÆaM`�a ��U�YÆ`�^�[*� Â gÆV+��^�fh^�nhaÉgÆb�^����¨[�nÊfhÿ>U�f�û�U�VX^��ÿ!^ZbMfhÿ!^r_�ÀdÁ Â þ ÂXÂ�Ä ^ZYÆYÆgiü!VX^Ñû�[�b�f�U%gÆb�VÊfhÿ�^�ûZ[%aÉü�YÆ^�fh^�`!b�gof
ý�U%VX^5ûZgonhûZYÆ^�c6�¨[�n/^���^�nXpuÁ gÆb�VXg3�!^5fhÿ�^Oý>U�VX^*ûZgonhûZYÆ^�� - ÿ!^
a]U�@�gia]U�Y Â¤Ç ÔOûZU%VX^àÿ�U%ü!ü�^Zb�V��¨[%n]gÆYÆYÆ`�aÉgÆb>U�fhgÆ[�b=��ÿ�gÆû�ÿ
gÆVMU%YÆ[�b �Ofhÿ!^]aÉgib![%nMU*@�gÆV1U�b��<gÆVMÿ![%nhgÆWZ[�b�f�U�YU� - ÿ!^¢�%U%YÆ`!^
[*� Â û�U%b-ý�^lgÆb U Ò Â Ô W c�fhÿ!^lYÆ^Zb �%fhÿé[���fhÿ!^la]U�E�[�nÉU�@!gÆVEgibU Ò Â Ô ¾ P ½ W �%¯U�n�U%aÉ^�fh^�n Â ûZ[�nXnh^ZVXü�[�b��!V�fh[�fhÿ�^�^�U�nhYÆgÆ^�n Ã ü�U�n�U�aÉ^�fh^�n��- ÿ!^	^ZYÆ^ZaÉ^Zb�f�U�nXp �+	��� ��^Zü�^Zb��!V�b�[�� [�b!Yopà[%b Â ³

Õ Ö× À Â*Â ´ Â µ ÄØÇ Ù Ú À Â�Ä$Â g��Ïµ Á¥Û _�ÀU´ ¸ Á Â þ ÂXÂ�Ä$Â
ÒM[%fhÿ!^�n���gÆVX^�� À��; Ä

- ÿ!^�U%YÆý�^���[É[���fhÿ!^ �
	��� gÆb¢�¨[�nhaM`!Y U¢À��� Ä gÆV�³�ÇÆ ÀU´ ÄKÇ eânh^ZU�À�_�ÀU´+¸Á Â þ ÂXÂ�Ä�Ä
e�nh^�U À�_�ÀyÅ Â þ ÂLÂ�Ä�Ä Ý À���� Ä

- ÿ!^HU%YÆý�^��![ÉgÆV�a]U*@�gÆa]U%Yi��[%n'´ Ç ·7� - ÿ!^�ûZ[�b!V�f�U%b�fâgib
^��m`�U�fhgÆ[�bªÀ��� Ä �¨[�n	^���^�nXp9�%U%YÆ`�^�[*� Â giV�f�U�:�^Zb/VX[1fhÿ>U�f���[%n
U(��^�nXfhgÆû�U%YdgÆYÆYi`!aÉgÆb>U�fhgÆ[%bàfhÿ�^�U�YÆý�^��![s��`�b!û�fhgÆ[�b¶gÆV�¼��- ÿ!^�ûZ[�aÉü!`!f�U�fhgÆ[%bà[��#fhÿ�gÆV�ûZ[�b!V�f�U%b�f�û�U�b¶ý�^	VX^Zü�U�n�U�fh^��
gÆb�fh[àfy��[¶û�U�VX^ZV��oH ÿ!^Zb Â Ó ½ P ¾ c#gk� ^��)��ÿ!^Zb*fhÿ!^Éa]U�E|[%nU�@�giVÔgÆV�YÆ^ZVXV#fhÿ>U�b�¼�c�fhÿ�^Êý�U%VX^vû�gÆnhû�Yi^�ûZ[�b�f�U�gib!V#fhÿ�^K��ÿ�[%YÆ^v^ZYoq
YÆgÆü�VX^+��gÆfhÿMûZ^Zb�fXnh^'Á Ç Å¢��5_bjfhÿ!^�[%fhÿ!^�nÊÿ>U�b��dc���ÿ!^ZbEfhÿ!^
a]U�E�[�n�U�@!gÆVÑgiV'�%nh^�U�fh^�n	fhÿ>U�b¥¼�c>fhÿ!^EgÆb�fh^�nhVX^Zû�fhgi[%b�V	VXÿ![�`!Y��
ý�^_ûZ[�aÉü!`!fh^��M�

Ú À Â�ÄKÇ Ù ¼RP&À � Â � Ä$Â g�� Â Ó ½ P ¾ Â¼RP%e�nh^�U�À�_�ÀyÅ Â þ ÂXÂ�Ä�Ä$Â g�� ½ P ¾ �ÈÂ Ó¶Ô ÝÀ���� Ä
T�b¶gÆaÉü�[%nXf�U%b!ûZ^	VhU�aÉü�YÆgÆb��!c!fhÿ�^�U�b�gÆVX[%fXnh[%ü�gÆûjaÉ[��!^ZYdû�U%b

ý�^æ`�VX^��ãVXgÆaÉgiYiU�nhYÆpéfh[5fhÿ�^àgÆVX[�fXnh[�ü�gÆû/aÉ[���^ZYk�
%�[%gÆbmfhV]U�nh^�%^Zb�^�n�U�fh^��MgÆb!VXg���^âU	ûZgonhûZYÆ^�fhÿ�U�f�ÿ>U�VÊn�U��!gÆ`�V Â c%fhÿ�^ZbMU	VXû�U%Yoq
gÆb �MfXn�U%b!V!�¨[%nha]U�fhgÆ[�b/gÆVâU%ü�ü!YÆgi^��àfhÿ>U�f�fXn�U�b�V!�¨[�nhaÉV�fhÿ�^�ûZgonXq
û�Yi^	fh[Efhÿ�^	^ZYÆYÆgÆü�VX^��- ÿ!^/U%b!giVX[�fXnh[�ü!giû/aÉ[���^ZY�û�U%b3U%YÆVX[<ý�^æ`�VX^��éfh[ª��^1�>b!^
aÉg�@mfh`!nh^ �
	��� V�³
Õ × ÀU´ Â µ ÄKÇ ,�

J
�)À Â�Ä Í ÕMÖ× À Â*Â ´ Â µ Ä2��ÂPÇ ,�ÉrÊ C&Ë 	\Ì �oÀ Â�Ä Í Ú À Â�Ä���ÂÀ���� Ä

eâb�gÆVX[%fXnh[%ü�gÆû�aÉ[��!^�YiV#û�U%bEý�^G�!^$�>b�^�����gofhÿj[%fhÿ!^�n¯b�[�nhaÉV
VW¦X�Z�[)\�^1_a`�b�_ac�d�Z�e Vyfihif�f ` V e c!jae `�l # N�N�N
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ÆªÀU´ Â µ ÄKÇÏÎQ¼
½¾ À�¿OÍ ù ÄLÀ ¦ ÐCÀ�¿�Í þ Ä�Ä ¦�Ð #dÑ ¦ À���� Ä> ö.¯(°.±9² ñ í § ø ú °�ú ð ø ï ú ° Ì ²ª½>ú�þ í ø ®�³�²�ÿ�²�±� ù ø ³%°�ú ð ø
e �+	��� a]U�ü�V�fy��[A��^�û�fh[%n��%U�nhgiU%ý!Yi^�V�fh[1UMVXû�U%YiU�n'�%U%YÆ`�^%c
fhÿm`�VHU�Y���UZp!VHgÆb���[�Y���^�V(��gÆaÉ^Zb�VXgÆ[�b5nh^��!`!û�fhgÆ[�b�� - ÿ!^É^1@!U%û�f
ü�ÿ�U%VX^=��ÿ�^�nh^ãfhÿ�^ �!gÆaÉ^Zb!VXgÆ[�bQnh^��!`!û�fhgÆ[�bQÿ�U%ü�ü�^�b�V*ûZU%b�%U�nXp	gÆbO��g�/Õ^�nh^Zb�f �
	��� V�� - ÿ�^+�!gÆaÉ^Zb�VXgÆ[%b	nh^��!`!û�fhgÆ[�bHU%YÆVX[
aÉ^�U�b�V�fhÿ�U�fv^�U%û�ÿ �+	��� û�U%blý�^ÑU%VXVX[�ûZgiU�fh^��¢��gofhÿl^��m`!g��mq
U%YÆ^Zb!ûZ^1ûZYiU�VXVX^ZVH[��P��^�û�fh[%n�ü�U%gonhVZcdgÆb<U»��UZp/fhÿ>U�f_fS��[¢��^Zû�q
fh[%nlü�U%gonhVæü�nh[���g3��^¶fhÿ�^¶VhU�aÉ^ �
	��� �%U%YÆ`!^/g��_fhÿ�^�p3U�nh^
gÆbLfhÿ!^-VhU%aÉ^<ûZYiU�VXV���T|bî%�ÿ![�b �%q � YÆgÆb�b �
	��� VZc��¨[�n�^$@�q
U%aÉü!YÆ^�c�U�YÆYG´ Â µ ü>U%gonhVjU�nh^]^���`!g3�%U%YÆ^Zb�fjg���fhÿ�^�p5ÿ�U���^1fhÿ�^
VhU%aÉ^�·ÎÍ�ÑëVXû�U�Y U�n_ü�nh[��!`!û�f��&T|bæfhÿ!^	b�^$�×aÉ[��!^ZY�c�fhÿ�^���gÆq
aÉ^Zb!VXgi[%b>U�Y#nh^��!`!û�fhgÆ[�b/f�U�:�^ZV_ü!Y U�ûZ^O��ÿ�^ZbOûZ[%aÉü�`!fhgÆb �1fhÿ�^ÆªÀU´ Â µ ÄKÇÉÈ Ì Ê ÀU· Í ÌÏÄ · È aÉ^�fXnhgÆû��T|bOfhÿ�gÆV�VX^Zû�fhgÆ[�b7��^1VXÿ�U%YÆY�^1@!U%aÉgÆb�^Eÿ�[�� U �
	��� ûZU%b
ý�^A��^1�>b!^��9��gofhÿ*U�b*U�nhý�gofXn�U�nXpD��`�b!û�fhgÆ[�bO[��v[�b�^(��U�nhgiU%ý�YÆ^

U�b��jÿ�[��égofhV�û�[%nXnh^ZVXü�[%b��!gÆb ���oÀ Ã�Ä ��`�b�û�fhgi[%bMû�U�b1ý�^P��^�fh^�nXq
aÉgÆb!^���� S ^�fÔ`�VdûZ[%b�VXg3�!^�n�U%bHU�nhý�gofXn�U�nXp�c�b![�b�q�b!^���U�fhg���^zÒ�ÀkÆ Ä
VXûZU%YiU�n+�¨`�b!û�fhgÆ[�b.��^1�>b!^��MgÆb1fhÿ�^ U Ò Â Ô W gÆb�fh^�n"��U�Y�c���ÿ�gÆû�ÿA��gÆYiY��^1�>b!^_fhÿ�^HVXÿ�U%ü�^�[��Êfhÿ!^	nh^10>^Zû�fhgi[%b/YÆ[�ý�^ZVâ[%nâfhÿ�^Hû�ÿ>U�n�U�û�q
fh^�nhgiV�fhgÆûZV¯[*�!fhÿ!^ �
	��� � ¨ VXgib �âfhÿ!gÆVZc*�v^G��^1�>b!^vU Õ*Ó× ÀU´ Â µ Ä��`�b!û�fhgÆ[�b ³Õ Ó× ÀU´ Â µ ÄKÇ Ò ÀkÆªÀU´ Â µ Ä�ÄKÇ Ò ÀkÆ Ä$Â Æ Û U Ò Â Ô W À���, Ä
 `!b�û�fhgÆ[%bkÒ�ÀkÆ Ä gÆV�aE`�YofhgÆü�YÆgÆ^�� ��gofhÿ9U%b�U%ü�ü�nh[�ü�nhg U�fh^¿ �Ïc } û�[�b�V�f�U�b�f]gibç[%n���^�nÉfh[B��`�Y��>Y�^Zb!^�n"�%péûZ[%b�VX^�n"�%U�fhgÆ[%b

nh^��m`!gonh^ZaÉ^Zb�f�c�fhÿm`�V�fhÿ�^Õ × ÀU´ Â µ ÄØÇ Õ�Ô*Õ2Öd× Ó× ÀU´ Â µ ÄKÇ ¿ �Ïc } Í Õ Ó× ÀU´ Â µ Ä��`�b!û�fhgÆ[�b¢��gÆYÆY#ý�^HUEü�YiU%`!VXgiý!YÆ^ �
	��� �
S ^�f�`�V�nh^ZûZU%YÆY)��^1�>b!gofhgi[%bBÀgÔ*Ò Ä [*��fhÿ�^ÑaÉg�@mfh`�nh^ �
	��� V��- ÿ!^�YÆ[��v^�n	YÆgÆaÉgof_[*�¯fhÿ�^�gÆb�fh^��%n�U�Y�û�U�b/ý�^�aÉ[��!g��>^��Õc�VXgÆb!ûZ^

U�ûZûZ[�n��!gÆb��Mfh[A�!^1��b�gofhgÆ[�b¥ÀgÔ Ä c�g�� Ãk� ÆªÀU´ Â µ Ä c�fhÿ�^��%U%YÆ`!^
[*� Õ × À Ã(Â ´ Â µ Ä gÆVHWZ^�nh[&� HNÿ�^Zb ÃØ� Æ�cdgofhV��%U%YÆ`�^1gÆV	fhÿ!^Ú À Ã�Ä ��^1�>b!^��lý�pl^���`>U�fhgÆ[�bªÀ�� Ä � - ÿ�`!VZc!fhÿ!^'�¨[%YÆYi[���gÆb��A��[%nXq
aE`�YiU_gÆVv^��m`!g���U�Yi^�bmf�fh[��¨[�nhaM`!Y U�ÀgÔ*Ò Ä ��[%n�fhÿ�^��!^1��b�gofhgÆ[�bÉ[*�
fhÿ!^	aÉg�@mfh`!nh^ �+	��� ³

Õ × ÀU´ Â µ ÄKÇ ,�ÉrÊ C�Ë 	�Ì �oÀ Ã�Ä Í ÕMÖ× À Ã�Â ´ Â µ ÄB��Ã¦Ç
,�ÉrÊ C�Ë 	�Ì �oÀ Ã�Ä Í Ú À Ã�Ä¥��Ã¦Ç ,�ÉrÊ C�Ë 	�Ì �oÀ Ã�Ä Í��'Í¨aÉgib�À!¼ Â�Ã , Ä~��Ã(ÝÀ��Ò Ä8v[%aÉü�`!fhgÆb �]fhÿ!^��!^�nhg��%U�fhg���^EU%ûZûZ[�n��!gÆb��]fh[.��U�nhgiU%ý�YÆ^(Æ�c�v^�[�ý�f�U%gÆb ³�oÀ Ã�ÄÏÇ Ê ¿ �Ïc } Í � Ò�ÀkÆ Ä� Æ À Ã�Ä ÍT�9Í�aÉgÆb À!¼ Â�Ã , Ä$Ý À�&¼ Ä
- ÿ!^��!^�nhg��%U�fhg���^1[*�G�¨`!b�û�fhgÆ[%bZÒlaM`!V�f�ý�^Mf�U�:�^Zb7��gofhÿ*U

aÉgÆbm`�VÑVXg���bÔcdVXgÆb�û�^AÆègiV	fhÿ!^MYÆ[���^�nHYÆgÆaÉgofH[���fhÿ�^jgib�fh^���n�U�q
fhgÆ[%b �- ÿ!^G¿ �Ïc } ��U%û�fh[%n�VXÿ![�`!Y���ý�^ÊVX^�fdfh[�a]U�:�^��oÀ Ã�Ä U�ü�nh[�ý�U�qý!gÆYigof�p��!^Zb!VXgÆf�pEU%b��HûZ[%b�VX^���`�^�bmfhYop�fhÿ!^ �
	��� ^Zb!^�n"�%pjûZ[%b!q
VX^�n"��gÆb �!c�fhÿ�`!V

¼¿ �Ïc } Ç Ê ,�
J
� Ò�ÀkÆ Ä� Æ À Ã�Ä ÍR�¢ÍZaÉgib�À!¼ Â�Ã , Ä\��Ã À��Ô Ä

��[%n��!^�û�nh^�U%VXgÆb �4Ò(��`�b�û�fhgi[%b�V��- ÿ!^�a]U*@�gÆaM`�a [��¯fhÿ!^�U%YÆý�^���[É[��¯fhÿ�gÆV �
	��� gÆV�¼�� - [
[%ý!f�U�gib9��U�n":�^�n�a]U�fh^�nhg U�YÆVZc�fhÿ�^ �
	��� û�U%bæý�^�aM`�YofhgÆü�YÆgÆ^����gofhÿàU(��U�û�fh[%nâfhÿ>U�fÑgÆV�YÆ^ZVXV�fhÿ>U%b7¼��T�b9U×VX[*��fy��U�nh^çgÆaÉü�YÆ^ZaÉ^Zb�fhgÆb��ãfhÿ�gÆV<U�ü�ü!nh[�U%û�ÿÙÒ×û�U%b
ý�^Eü!nh[��mg3�!^��/gÆb�fh^�n�U%û�fhg���^�YÆp5ý�p¶fhÿ!^M`�VX^�nHU%VHU�b<U�nhý!gofXn�U�nXp
û�`!n"��^-`!VXgib �×U4�%n�U�ü�ÿ�gÆûZV�gÆbmfh^�n���U%û�^ À¨fhÿ!^ãû�`!n"��^=��^1�>b!^ZV

VWCX�Z�[)\?^�_a`�b�_ac�d�Z1e Vgfihifaf ` V e c!jke `�l # N�N�N



� ���%��������� � �����'�������)�����i�X�������a����� ���K�.�¯�k�¯�!�$�k�������P�l������� �6�������O�����!� �X���������k��������� ������� � ��¡ ���
U/[�b!^¢�%U�nhgiU%ý!YÆ^¢�¨`!b�û�fhgÆ[%b Ä �Ø5_b!YÆp�fhÿ�^Én�U�fhgÆ[5[��âfhÿ�^]g3�!^�U�Y
aÉgonXnh[%n�ûZ[%aÉü�[�b!^Zb�fOÀ�ü�[�YÆgÆVXÿ�gÆb�� Ä aE`�V�f�ý�^�VXü�^�ûZg��>^��lVX^Zü>U�q
n�U�fh^�YÆpBÀ�VX^Z^�^���`�U�fhgÆ[�b¥ÀgÔ?¼ Ä�Ä �
\_[%fh^�fhÿ�U�fDÒ�gÆV�b![%f�nh^���`�gonh^��Efh[�ý�^�aÉ[%b�[%fh[%b�^6��^Zû�nh^�U�V�q

gÆb���cÔý!`!f	fhÿ!^MûZ[%b���gÆfhgÆ[%b*[��vb�[%b!qsb�^���U�fhg��mgof|pOaM`!V�f	ý�^Egia1q
ü�[�VX^��jgÆbjU%b�p�û�U�VX^��  [%n
ÒP�¨`�b!û�fhgÆ[�b!V�ÿ>U��mgÆb��âaÉ[�b�[�fh[�b!^�gÆb!q
û�nh^�U�VXgÆb��âü>U�nXfhVZc�fhÿ!^�û�[�aÉü�`�f�U�fhgÆ[�b�[*�!fhÿ!^�a]U�@�gia]U�Y�U�Yiý�^��![
U%b��3[���fhÿ!^/b�[�nha]U%YÆgÆVXgib �¥��U�û�fh[%nàgiVlaÉ[%nh^¤�!g�ÉûZ`!YÆflfhÿ>U�b
^���`>U�fhgÆ[�b=À�?Ô Ä U%b��5û�U�bOý�^1U%û�ûZ[�aÉü!YigÆVXÿ!^��/ýmp¶b�`!aÉ^�nhgÆû�U%Y
aÉ^�fhÿ![��!V�`�VXgÆb �s�¨[�nhaM`�YiU»ÀgÔ�Ô Ä �> ö�õ>ö ¬ ø ²�ÿ î °�ú¨³�²�ÿaÿ î ú ø ° í ½>±�²!Ïÿ í ³�²>® í ®
T|bHfhÿ�gÆV�VX^�û�fhgÆ[�b(�v^
��gÆYÆY!ü�nh^ZVX^Zb�f¯VX[�aÉ^�aÉ[�b![%fh[�b!^G��^Zû�nh^�U�V�q
gÆb��EÒ���`�b!û�fhgÆ[�b�VK��ÿ�gÆû�ÿ]U�nh^�VX`�gof�U�ý�YÆ^���[%nvU%ü!ü�YÆgÆû�U�fhgÆ[�b!V�U%b���¨[�n���ÿ!gÆû�ÿàfhÿ!^O¿ �Ïc } aE`�YofhgÆü�YÆgÆ^�nP��nh[%a+^���`>U�fhgÆ[%b¥À�?Ô Ä ûZU%b
ý�^O�!^�nhg3��^��àU�b>U%YopmfhgÆû�U%YÆYop?�
S ^�frÚ�ý�^	fhÿ�^_ü!nhgÆaÉgofhg3��^'�¨`!b�û�fhgÆ[�bæ[��zÒ�c>U�b��NÛ ý�^	fhÿ�^

ü!nhgÆaÉgofhg���^�[��~ÚÉÀa��gÆfhÿlU�nhý�gofXn�U�nXpMûZ[�b!V�f�U%b�fhVTÜ Ä gk� ^���Ú Ç�  Ò
U%b�� Û Çu  Ú �- ÿ�^Zbdc�gof�û�U�b¶ý�^�^�U%VXgÆYop9�!^���`�ûZ^��]fhÿ>U�f�³

¿ �Ïc } Ç ¼Ô;�ØÀ�ÚsÀ!¼ Ä Ê Û¥À!¼ Ä Ð�Û¥ÀUÒ Ä�Ä Ý À�^� Ä
- ÿ�gÆVP�¨[%nhaE`�YiUMgÆV�fXnh`�^	^1��^Zbàg��zÒ ÀgÔ ÄB! Ò&�> ö�õ>ö�õ�ö.ý ��ü ð ø í ø °Zú�²�ÿ � ù ø ³%°�ú ð ø- ÿ�gÆVâVX^Zû�fhgÆ[�bà`�VX^ZV�fhÿ�^	^$@!ü�[%b�^Zb�fhgiU%Y��¨`!b�û�fhgÆ[�b¶U%VâU1VXû�U%YiU�n�¨`!b�û�fhgÆ[%bàfh[��!^$�>b�^Ñfhÿ�^	ÿ!g3�%ÿ�YÆg���ÿ�fâü!nh[*�>YÆ^�³Ò�ÀkÆ ÄØÇÞÝ V�ßáà É Ý À�� Ä- ÿ�^�b![%nha]U�YigÆVhU�fhgi[%b¤��U�û�fh[%nâgÆV

¿ �Ïc } Ç â ,Ô;�ØÀ!¼ Ê À!¼+Ð â ÄLÝ V&ß Ä Â À��� Ä
U%b��lfhÿ!^ �
	��� giV

Õ Ê ß Ì× ÀU´ Â µ ÄKÇ â ,Ô;�ØÀ!¼ Ê À!¼+Ð â ÄLÝ V�ß Ä Í Ý V&ßãà É Ý À�^� Ä
¨ VXgÆb��O�¨[�nhaM`�YiU.À� ¼ Ä c&�v^_û�U�bæ[%ý!f�U�gib]fhÿ�^��¨[%YiYÆ[���gÆb��1^$@�q

ü!nh^�VXVXgi[%b9�¨[�nÑfhÿ!^_nh^���`�gonh^��.��^Zg��%ÿmfhgÆb �A�¨`�b!û�fhgÆ[�b4� ³�oÀ Ã�ÄÏÇ Ê ¿ �Ïc } Í � Ò�ÀkÆ Ä� Æ À Ã�Ä ÍT�9Í�aÉgib�À!¼ Â�Ã , ÄKÇâ 2 Í Ý V&ßãà � Í�aÉgÆb À!¼ Â"Ã , ÄÔ�À!¼ Ê À!¼+Ð â ÄLÝ V&ß Ä Ý À��� Ä
- ÿ�^]ü!nh[%ý>U%ý!gÆYigof�p=�!^Zb!VXgofhgi^�VZc�fhÿ�^]gÆb���^�nhVX^][���fhÿ�^]ü�nh[�ý!q

U%ý!gÆYigof�pÉ�!gÆV�fXnhgÆý�`�fhgÆ[�bQ�¨`!b�û�fhgÆ[%b�VZc	fhÿ!^çU�YÆý�^��![%VZcHU%b�� fhÿ�^
VXÿ>U�ü�^ZV�[��#fhÿ�^ �
	��� YÆ[%ý�^ZVâU�nh^�VXÿ�[���bægib»���%`!nh^s¼6!c&���%q
`!nh^�¼Q��c&����`�nh^(¼R�jU%b��.����`�nh^(¼Q��cmnh^ZVXü�^Zû�fhg���^ZYop�c?��[%n��!g�/Õ^�nXq
^Zb�f â ü>U�n�U�aÉ^�fh^�nhV�� [%n â ! ¼�Ò�c�fhÿ�^_aÉ[��!^ZYÕgÆV�U%Yonh^�U���pæÿ�g���ÿ!YÆplVXü�^Zû�`�YiU�n���e
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� � � ���%��������� � �����'������� �����i�X�������a����� ���Ï�.�¯�k�¯�!�$�k�������6�l�$����� �6� �3���������!� �X���������k�������'� ���v�m� � ��¡
��^�nXp��%[�[��ÉU%ü�ü�nh[�@!gÆa]U�fhgi[%b1[���fhÿ!^�U%ý�[���^G��[%nhaM`!YiU��¨[�n�fhÿ!giV
ü>U�n�U%aÉ^�fh^�n��![�a]U�gÆbàgÆV�³

Õ Ê ß Ì× ÀU´ Â µ ÄKÇ â ,Ô;� Í Ý V&ßãà ÉrÊ C&Ë 	\Ì Ý À�^� Ä
��ÿ�^�bàfhÿ�^	û�[%nXnh^ZVXü�[%b��!gÆb �E�¤��^Zg��%ÿmfhgÆb �s�¨`!b�û�fhgÆ[�bàgiV�³�oÀ Ã�ÄÏÇ â ,Ô Í Ã Í Ý V�ßãà � Í�aÉgÆb�À!¼ Â"Ã , Ä$Ý À�^, Ä
S ^�f�`!Vâû�[�b�VXg3��^�n6�¨[%nhaE`�YiU9À��Ò Ä U%b��àU%b9Æ � ¼���U�YÆ`�^�³
Õ × ÀU´ Â µ ÄKÇ ,�

J
�oÀ Ã�Ä Í Ú À Ã�Ä\��ÃCÇpæ É Ë # Ð æ # Ë , Ç

�9Í #�É �oÀ Ã�Ä Í Ã , ��Ã Ð��9Í ,�
# �oÀ Ã�ÄB��Ã�Ý À���Ò Ä

T|b�fhÿ!^vû�U�VX^�[��>U���^�nXfhgiûZU%Y�gÆYÆYi`!aÉgÆb>U�fhgÆ[%b(��^�ÿ>U���^ØÆ Ó¦¼�gÆb!q�!^�ü�^Zb���^Zb�fhYÆp	[���µ5c�fhÿ�`!V#^���^Zb���[%n¯fhÿ!^vÿ�[�nhgÆWZ[�b�f�U%Y��mgÆ^1��gÆb���!gonh^Zû�fhgi[%bàfhÿ�^�nh^'��gÆYiYdý�^�Ujb�[�b�qsWZ^�nh[ª«S�!g�/Õ`�VX^�ü�U�nXf"¬&� - ÿ!giV
gÆV�ûZ[�aÉü�[%b�^Zb�f æ # Ë , gÆb*^��m`�U�fhgÆ[�b À���Ò Ä ��ÿ�gÆû�ÿ*gÆV	fhÿ�^Egib�fh^�q�%n�U�Y�[���^�n#fhÿ!^ U ¼ Â Ô W gÆb�fh^�n"��U�Yk� - ÿm`�VZc��¨[�n�fhÿ�^ÊfXnh`�Yop_VXü�^ZûZ`�YiU�n
a]U�fh^�nhg U�YÆV�b�[%f	[�b�YopÃÒ ÀgÔ Ä�Ç Òlý!`!fOÒ ÀkÆ Ä6Ç Ò.��[%nOÆ � ¼
aM`!V�f�ý�^�gÆaÉü�[�VX^��M�- [égiYÆYÆ`�V�fXn�U�fh^5fhÿ!gÆVZc�fhÿ�^/f�U%ý!YÆ^=¼5ûZ[%b�f�U%gÆb�Vlfhÿ�^OûZ[%nXnh^�q
VXü�[�b��!gÆb��.�%U%YÆ`�^�V_[��Êfhÿ!^A¿ �Ïc } U�b�� â ü>U�n�U�aÉ^�fh^�nhVÑ[���fhÿ�^Õ × ÀU´ Â µ Ä�Ç ¿ �Ïc } Í Ý V&ßãà É �¨`�b!û�fhgÆ[�bdc æ # Ë , U�b�� � ¢ e £�^ f [ Ç� ¢ e £�^ f [ Ç ¿ �Ïc } ÍT�9Í Ý V , ß��H ö.° í ²�ÿ S ²�° í ±�ú�²�ÿ¨®H ö�õ>öA@ í °Z²�ÿ¨®E² ø ñ3° Ì í ø ímï S ð ñ í ÿ- ÿ�^ �
	��� V/[��MaÉ^�f�U%YÆV¶gÆb�û�nh^�U%VX^*fh[���U�n��!V/gÆb&�>b�gof�p4�¨[�n�%n�U�WZgÆb��EU%b ��YÆ^ZV�� - ÿ�gÆV�giV
�!`!^�fh[Hfhÿ!^P��U%û�fvfhÿ>U�f+��[%n�VXaÉ[�[�fhÿ
aÉ^�f�U�YiV�fhÿ!^	ü!nh[���`�û�f�[*�¯fhÿ�^ �+	��� U�b��]fhÿ�^	ûZ[%VXgÆb�^	fh^�nha
gÆVHU%ü!ü!nh[�@�gia]U�fh^ZYopOûZ[�b!V�f�U%b�f�cdfhÿ�`!V_fhÿ�^Mgib!ûZg3�!^Zb�fHU�b��Ofhÿ�^
[�`�f"��[%gib �-n�U��!giU�b�ûZ^5gÆV¶U%ü!ü!nh[�@�gÆa]U�fh^ZYopç^���`>U%Yk� - ÿ�^5ü!nh[%q
ü�[�VX^��OaÉ[���^ZYo��[�^ZV	b![%f��¨[�YÆYÆ[��Qfhÿ�gÆV_ý�^�ÿ>U��mgi[%`!nÑVXgÆb�ûZ^jfhÿ�^
a]U*@�gÆaM`!a [*��fhÿ�^ �
	��� �%U%YÆ`�^�VâgÆVâûZ[�b!V�f�U%b�f6�¨[�n_U�b�pàgÆb!q
ûZg3�!^�bmfâU�b��%Yi^��- [ ��`!nXfhÿ�^�né^1@�ü�YiU%gÆb fhÿ!gÆVZcEYÆ^�fé`!V-ûZ[�aÉü�U�nh^ãfhÿ�^Ný�^�q
ÿ>U��mgÆ[�`�n1U�fEfhÿ!^lYÆgÆaÉgofhgÆb��OaÉgonXnh[%nEû�U%VX^l[���fhÿ�^»%Êÿ�[%b��!c#[��
fhÿ�^lb�^$�:aÉ[��!^�Y�U%b��-[��âfhÿ�^Énh^�U%Y�aÉ^�f�U%YÆV���eÑVXVX`!aÉ^1fhÿ>U�f
fhÿ�^  nh^�VXb�^ZY&�¨`�b!û�fhgÆ[�bÉgÆV�U�ü�ü�nh[�@�gÆa]U�fh^�YÆp»¼�À¨fhÿ�gÆV�giVvU���[�[��
U%ü!ü!nh[�@�gÆa]U�fhgÆ[�bA��[%n�VXgÆY���^�nvaÉgonXnh[%n�c���[%n�gÆb!V�f�U%b�û�^ Ä cmU%b��1fhÿ�^
VXÿ�gÆb!gib!^ZVXV¬ç ��ÿ�gÆû�ÿQgÆV5nh^Zü�nh^ZVX^Zb�fh^�� ý�p â gÆb fhÿ!^-b�^1�aÉ[��!^�Y�U%b��éý�p-fhÿ�^æ^1@�ü�[�b�^�bmfMgÆbçfhÿ�^9%�ÿ![�b ��aÉ[���^ZYBç��[�^�VÊfh[ÑgÆb �>b!gof|p?��Ty�!fhÿ�^�[�ý�VX^�n"��^�nÊYÆ[�[�:mV�U�f¯fhÿ!^vaÉgonXnh[%nÊü�^�nXq
ü�^Zb��!gÆûZ`�YiU�nhYÆp/U%b��àfhÿ!^EgÆYÆYÆ`�aÉgÆb>U�fhgÆ[�bOgÆV	U%YÆVX[lü�^�nhü�^Zb��!gÆûZ`!q
YiU�n�c�fhÿ!^Zb<ý�[�fhÿ<fhÿ�^]b�^1� aÉ[��!^�Y�U%b��*fhÿ�^.%Êÿ�[%b��OaÉ[��!^ZY
ü!nh[��mg3�!^àfhÿ!^àVhU�aÉ^àn�U���g U�b�ûZ^OU�b��-nh^10>^�û�fh^��çü�[��v^�nlU%VlU

nh^ZU%Y�aÉ^�f�U�Yk��<_[���^1��^�n¯U�fo��n�U%WZgÆb��ÑU%b ��YÆ^ZVZc���ÿ!giYÆ^vU�nh^ZU%Y�aÉgonXq
nh[�n���[%`�Y3�5nh^$0>^Zû�f_fhÿ�^MgÆb!ûZ[�aÉgÆb��]n�U���giU%b�û�^ÉU%b��/fhÿ!^M[%`!fXq
ü!`!f�ü�[��v^�n6��[�`!Y3�æý�^�^���`>U�Y�fh[Efhÿ�^_gib!ü�`�f�ü�[��v^�n�c&�¨[%n�fhÿ!^%Êÿ�[%b���aÉ[���^ZY�ý�[�fhÿ1fhÿ�^�n�U���giU%b�û�^_U�b��Mfhÿ�^�[%`!fhü�`�f�ü�[��v^�n
fh^�b��Éfh[MWZ^�nh[&��T�b�fh^�nh^ZV�fhgÆb��%YÆp�c�fhÿ!^	[�`�fhü�`�f�n�U���g U�b�ûZ^_[���fhÿ!^
b!^1�çaÉ[��!^ZY�U%YÆVX[O��[�^ZVvfh[�W�^�nh[jU�fG��n�U%WZgÆb �EU�b��%Yi^�VZcmý�`!fÊfhÿ!^
[%`!fhü!`!fHü�[���^�nM^���`>U�YiVHfh[¶fhÿ�^ÉgÆb!ü�`!fjü�[���^�n1U�f1U�nhý�gofXn�U�nXq
gÆYopÉûZYÆ[%VX^Ñfh[Hfhÿ�^âÿ�[%nhgÆWZ[%b�f�U%Y�gÆYÆYi`!aÉgÆb>U�fhgÆ[%b � - ÿm`�VZc�fhÿ!^Ñb!^1�
aÉ[���^ZY�gÆVÉU�bç^Zb!^�n"�%p<aÉgÆnXnh[�nÉgÆb-fhÿ�gÆV1YÆgÆaÉgÆfhgÆb ��û�U�VX^�c�ý�`�f
gÆVâb�[�f_U�b/g3�!^�U�Y#n�U���g U�b�ûZ^HaÉgonXnh[%n�� - ÿ�gÆV_gÆV»«|ý�^�fXfh^�n"¬1fhÿ>U%b
fhÿ!^6%�ÿ![�b �jaÉ[���^ZY���ÿ�gÆû�ÿÉgÆV�b�^Zgofhÿ�^�n�n�U��!giU%b!ûZ^Ñb![%n�^Zb�^�n"�%p
aÉgonXnh[�n�� - ÿ!^Hn�U��!giU%b!ûZ^HaÉgonXnh[%nâü!nh[%ü�^�nXf|pæaÉ^�U%b!V�fhÿ>U�f�fhÿ!^
gÆYÆYÆ`�aÉgÆb>U�fhgÆ[�b [��jü�[%gib�fæYÆg3�%ÿ�f¶VX[�`�nhûZ^ZVàU�nh^Onh^10>^Zû�fh^��NYÆg3:�^
nh^ZU%Y�aÉ^�f�U�YiVM^���^ZbãU�fA�%n�U%W�gib �-U%b ��YÆ^ZV�� - ÿ�^æ^Zb�^�n"�%péaÉgonXq
nh[�n�ü!nh[%ü�^�nXf|p�cÕ[%b5fhÿ!^M[�fhÿ�^�nHÿ�U%b��ÕcÕaÉ^�U%b!V_fhÿ>U�f	fhÿ�^s�!gÆV�q
fXnhgÆý!`!fh^��CÀ�^�� � ��V�:�p�Yig��%ÿmf Ä giYÆYÆ`�aÉgÆb�U�fhgÆ[�bçgiV1nh^$0>^Zû�fh^��ãgÆbçU��UZp5U%V�nh^�U%YÊaÉ^�f�U�YÆV�VXgib!ûZ^A�¨[�nH`�b!g���[%nhaÉYop7�!gÆV�fXnhgÆý�`�fh^���gÆYoq
YÆ`!aÉgib�U�fhgÆ[�bdc>fhÿ�^jü�^�nhûZ^�g3��^��¶n�U��!giU�b�ûZ^1gÆV	ü�nh[�ü�[�nXfhgi[%b>U�YÊfh[
fhÿ!^�U%YÆý�^���[¤À�^���`>U�fhgÆ[�b¥À!¼T� Ä �

%Êÿ�[�b � b!^1� �
	��� nh^�U%YdaÉ^�f�U�YÀ�MÃ´éè Ä À â ´éè Ä aÉgÆnXnh[�nhV� �Ï[gc�l ¼Qê�Ô ¼ ¼� À�ëE´é,�Ò�ì Ä Ò ¼ ¼Y `�^1j À�ë"´é,�Ò ì Ä Ò Ò Y e lÕ × À�ë]´í,�Ò ì Ä ûZ[�b!V�f�U%b�f ûZ[%b�V�f�U%b�f è¸ ²!Ïÿ í ® ò ô�»%ÈÑÀ�¿%º�·�Ã�»�¸-¹�Á�µ]Å ·�ÈM·¨¹�·¨¸�Ìà¾h¿%Ã�µl»|ËE¹�Á�µjÚvÁ!»�¸mÌ
È1»�¼�µ�Å Û�»|Ëj¹�Á�µE¸�µ�Ö È1»�¼�µ�Å¯¿%¸>¼¶»�ËHºhµX¿�Å�È]µ�¹s¿%Å�ÈM·¨º�ºX»%º�ÃE¿%¹
Ì%º�¿Rî�·¨¸mÌl¿%¸mÌ�Åiµ�Ã
H ö�®dö�ï ð ²�° í ñ S í °Z²�ÿ¨®�ð S í °Z²�ÿaÿ¨ú¨³¤ü#²>ú ø °�®
H*^OûZ[�b!ûZYÆ`��!^�� fhÿ�U�flfhÿ�^5b�^1�ëaÉ[��!^ZYÑgÆVàb�[�f/U-ü�^�n���^Zû�f
aÉ^�f�U%YÆYÆgiûÉaÉ[���^ZY�ý�^Zû�U%`!VX^Éfhÿ�^ �
	��� [���aÉ^�f�U�YÆV��%[�^ZVEfh[
gÆb&�>b�gof�pàU�f��%n�U%W�gib �lU%b��%YÆ^ZV���ÿ!gÆYi^�fhÿ!^ �
	��� [*�¯fhÿ�^�b!^1�
aÉ[���^ZYÕgÆV�ý�[�`�b��!^��lý�`�f�gofhV�nh^$0>^Zû�fhgÆ[%b¶YÆ[�ý�^���^�fhV6��g3��^�nâgib
[�n��!^�njb![%fjfh[/U%ý!VX[%nhýéU%YÆY�^Zb�^�n"��p?�K8v[%b�VXg3�!^�nhgÆb �Onh^ZU%Yva]U�q
fh^�nhg U�YÆVZc�aÉ^�f�U�YÆV�ûZ[�U�fh^��àý�plUEYiU%û��m`!^�n�YiUZp�^�n$, # ý�^Zÿ�U���^	YÆg3:�^
fhÿ!gÆV���k�gÆb�û�^�gÆb�YiU%û��m`!^�n#fhÿ!^�U�fXfh^Zbm`>U�fhgÆ[�bH[��mfhÿ�^�ü�[���^�n#gÆV�U%b
^$@!ü�[%b�^Zb�fhgiU%Y?��`�b�û�fhgi[%b1[���fhÿ�^�YÆ^Zb �%fhÿMfXn�U���^ZYÆYÆ^��Õc���[%n�ÿ�g���ÿ!^�n
gÆb!ûZg3�!^Zb�f�U%b ��YÆ^ZVZc�ý�[�fhÿ1fhÿ�^�nh^10�^Zû�fh^��En�U��!giU%b!ûZ^ÑU%b��Eü�[��v^�n��gÆYÆYÕfh^Zb��]fh[1WZ^�nh[ÉU�f6�%n�U�WZgÆb��]U%b ��YÆ^ZV���Ty��fhÿ!^	YiU%û���`�^�nâU%YÆVX[
û�[�b�f�U%gÆb�V�fhÿ!^	ü>U�nXfhgÆûZYÆ^ZV�[��#fhÿ!^	ý>U�VXgÆû�aÉ^�f�U%Y�c�fhÿ�^�bæfhÿ�^Ñý�^�q
ÿ�U���gÆ[%`!n�[*��fhÿ�^Ea]U�fh^�nhgiU%YÏ��gÆYÆYvý�^Egib�ý�^�fS�v^Z^Zb5fhÿ�^MaÉ^�f�U%Y
U�b��/YiU%û���`!^�nh^��OaÉ^�f�U%YÆV��ÔeÑý!VX[%nhü!fhgÆ[%bÔcÕVXû�U�fXfh^�nhgÆb��¶U�b��/nh^�q0�^Zû�fhgÆ[�b]û�U�bæ[�û�ûZ`!n�VXgÆaE`�Yof�U%b!^Z[�`!VXYÆp1gibÉfhÿ!^_YiU%û���`!^�n�YiUZp�^�n��- ÿm`!V.��[%næÿ�g���ÿ!^�nlgÆb�ûZg3�!^�bmfæU�b���YÆ^ZV]fhÿ�^/aÉ^�f�U%Yâü>U�nXfhgÆûZYÆ^ZVZc
^�VXü�^ZûZgiU%YÆYop�fhÿ![�VX^Mfhÿ�U�fHU�nh^ÉûZYÆ[�VX^1fh[lfhÿ�^MVX`�n���U�ûZ^�c)��gÆYÆY�ý�^
nh^�VXü�[�b�VXgÆý!Yi^.�¨[�n1nh^10�^Zû�fhgÆb��/fhÿ�^]gÆb�û�[�aÉgÆb��Oü�ÿ![%fh[%b�V�� - ÿ!^
[%ý&E|^Zû�fEU%û�fhVEU�VH^Zb�^�n"��p*aÉgonXnh[�nH^���^Zb�g��vfhÿ�^Mnh^10�^Zû�fh^��5n�U�q��giU%b�û�^(��^Zû�nh^�U�VX^ZV��)8v[�b!VX^���`�^Zb�fhYopàfhÿ!^jb!^1��aÉ[���^ZY#VX^�^ZaÉV
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Exponential BRDF at 0, 40 and 80 incident degrees (s=2)
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Exponential BRDF at 0, 40 and 80 incident degrees (s=5)
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Exponential BRDF at 0, 40 and 80 incident degrees (s=10)
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Exponential BRDF at 0, 40 and 80 incident degrees (s=20)
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fh[lý�^MU�ü�ü!nh[%ü!nhgiU�fh^��¨[�n	nh^Zü!nh^�VX^Zb�fhgib �]ûZ[�U�fh^��5aÉ^�f�U%YÆV�U%b��
aÉ^�f�U�YiYÆgÆû�ü>U�gÆbmfhV��
k�gÆb�ûZ^âfhÿ�^��!g�/Õ`�VX^ÑûZ[�aÉü�[%b�^Zb�fv[��#fhÿ!^_aÉ^�f�U�YÆV�gÆV�ü!n�U�û�fhgoq

û�U�YiYop/b!^���YÆg���gÆý!Yi^%c�fhÿ�^HaÉ^�f�U%YÆYÆgÆûHü>U%gÆb�fhV	U�nh^jU%ü�ü�nh[�@!gÆa]U�fh^��
U%VP��[�YÆYÆ[���V ¿ �Ïc } ÍãÒ�ÀkÆ Ä Í  nh^ZVXb!^ZYUÀ�ë ¸ Ä$Â À���¼ Ä��ÿ�^�nh^»¿ �Ïc } Í;Ò�ÀkÆ Ä gÆVEU �
	��� �  [�njaÉ^�f�U%YÆVZcdfhÿ�^�Ò ÀkÆ Ä�¨`!b�û�fhgÆ[%bàÿ>U�V�Us��`�gofh^	VXa]U�YÆY ��g�/Õ`�VX^	ûZ[%aÉü�[�b!^Zb�f��?H<^_ûZU%b
`�VX^%c?�¨[%n�^1@!U%aÉü�YÆ^�c�fhÿ�^+Ò�ÀkÆ ÄÏÇ À â , P�Ô;� Ä Í Ý V&ßãà É �¨`�b!û�fhgÆ[�bdc
U%VXVX`!aÉgÆb��Mfhÿ�U�f â ! ¼�Ò&�- ÿ�^Q��U���^�Yi^�b��%fhÿ �!^Zü�^Zb��!^Zb�f  nh^ZVXb�^ZY£�¨`!b�û�fhgÆ[%b �!^�q
VXû�nhgÆý�^ZV�fhÿ�^Ñnh^10>^Zû�fhgi[%bà[*��fhÿ�^Ñ[�ü!fhgÆû�U�YÆYÆpæVXaÉ[�[%fhÿæa]U�fh^�nhgiU�Y
U%VâU(��`�b!û�fhgÆ[�b¶[*�¯fhÿ�^	gÆb�û�g���^Zb�fâU%b ��YÆ^��T|b fhÿ�^¥8v[�[�:�q - [%nXn�U�b�ûZ^<aÉ[���^ZY�câU%V¤�v^ZYÆYEU�V¶gÆbL[�fhÿ�^�n
aÉgonXnh[%nXqsü>U�nXfhgÆûZYÆ^�aÉ[���^ZYÆVZcP�¨[%n/U �%g3��^ZbËÀU´ Â µ Ä ü>U�gon�c�fhÿ�^
^1@�ü�^Zû�f�U�fhgÆ[�bQ[��Éfhÿ!^-b�[�nha]U%Ys��^Zû�fh[%nhVO[*�lfhÿ!^<nh^10>^�û�fhgÆb����U�ûZ^�fhVjgÆVHfhÿ!^�Ñ¹��^�û�fh[%n�cdfhÿm`�V_fhÿ!^]U%b��%YÆ^É[���gÆb�û�g���^Zb�û�^ÉgiVëQó Ç U�nhûZû�[�V�ÀU· Í�Ñ Ä �- ÿ�gÆVHU%ü!ü!nh[�U�û�ÿ�gÆVjVXYÆg���ÿ�fhYop5aÉ[��!g��>^��5gÆb�fhÿ!^s�¨[%YÆYi[���gÆb����UZp?� - ÿ�^7�!gÆV�f�U�b�ûZ^/[*�jfhÿ!^DÑ Á Ç Àkµ Á Ðî´ Á Ä P�Ôª��^Zû�q
fh[%n'��nh[�a fhÿ�^�ÅJ[%nhg���gÆb5giV�`!VX^��¶fh[æ^1��U�Yi`�U�fh^jfhÿ�^  nh^ZVXb�^�Y�¨`!b�û�fhgÆ[%b �
È Ñ Á Ê Å È�Ç È ´ Á Ê µ Á ÈÔ Ç È ½ Ê ÀU· Í ½ Ä · ÈÔ Ç ÆªÀU´ Â µ ÄÔ ÝÀ���Ô Ä��ÿ�^�nh^vfhÿ�^+ÆªÀU´ Â µ Ä aÉ^�fXnhgÆû�gÆVK�!^ZVXû�nhgÆý�^��jý�p��¨[�nhaM`�YiU�ÀgÔ�, Ä
ý�^ZYÆ[�b ��gÆb��1fh[Efhÿ�^_nh^�fXnh[�qÄnh^10>^Zû�fhg3��^	aÉ[��!^ZYk�
S ^�f�`!V���^1�>b!^�U%b ��YÆ^]ë�¸ÔgÆbàfhÿ�^'��[�YÆYÆ[���gib �»��UZp�³ë ¸ Ç U�nhûZVXgÆbZô ÆªÀU´ Â µ ÄÔ õ Ý À���� Ä
T|bàû�[�b�û�Yi`!VXgÆ[�bÔc!fhÿ�^	ü�nh[�ü�[%VX^��àb�^$�LaÉ[���^ZYÕgÆV�³
Õ × Ë �Ï[Ujkc�q q e V ÀU´ Â µ ÄKÇ â ,Ô;� Í Ý V&ßãà÷ö ø�V Êúù à ø Ì ù ö Í  nh^�VXb�^ZY�û�À�ë ¸ Ä$ÝÀ��; Ä��ÿ�^�nh^]ë ¸MÇ U�nhû�VXgib)À È ½ Ê ÀU·ÎÍ ½ Ä · È P�Ô Ä �- ÿ�^�aÉ[��!^�Y!gÆVÊfhÿ�^�ü!nh[���`�û�fÊ[*�dU_nh^10>^�û�fhg���^�U%b��1UÑnh^�fXnh[�q
nh^10�^Zû�fhg���^ãaÉ[��!^ZYk��T�aÉü�[%nXf�U%b!ûZ^éVhU%aÉü!YigÆb � ûZU%b ý�^çü�^�nXq�¨[�nhaÉ^��é^1ÉûZgÆ^Zb�fhYopã[�bçfhÿ!^ành^10�^Zû�fhg���^¢�¨U%û�fh[�n�cvfhÿ!^ænh^�fXnh[�q
nh^10�^Zû�fhg���^+�¨U%û�fh[�n�aÉ[��!g��>^ZVdfhÿ�^Ø��^Zg���ÿ�fhV¯[*��fhÿ�^�^ZYÆ^ZaÉ^Zb�f�U�nXp
n�UZp�VÑU�VâUMaM`!YÆfhgÆü!YigÆ^�n��H ö ß öAü ÿ�²>®Z°�ú�³�®É² ø ñ¶ü ð ÿ�ú¨® Ì ú ø ½¨ VXgÆb �OUænh^�U%Y�nh^1��n�U�û�fhgÆ[�b-gÆb���^1@*gÆb<fhÿ!^  nh^ZVXb�^�Y�fh^�nhaègÆb!q
V�fh^�U��3[��	fhÿ!^¶ûZ[%aÉü�YÆ^1@ãgÆb��!^$@ç[*��aÉ^�f�U�YiVZc�fhÿ�^àü!nh[�ü�[%VX^��
aÉ[��!^�YdûZU%b¶U�YÆVX[Éý�^	`�VX^��.�¨[�n_aÉ[���^ZYÆYigÆb �Efhÿ�^_VXü�^ZûZ`�YiU�nânh^�q0>^�û�fhgÆ[�bl[���ü!YiU%V�fhgÆûZV��>k�gÆb�ûZ^âfhÿ�^'�!g�/Õ`�VX^ânh^10>^Zû�fhgi[%bà[*��ü�YiU�V�q
fhgÆûZVHgÆVEU�YÆVX[/VXg3�%b�g��>ûZU%b�f�c#fhÿ!^ �
	��� �¨`!b�û�fhgÆ[�b*giV���^1�>b!^��
U%VjUàVX`!a [���fhÿ!^.�!g�/Õ`�VX^1U%b��5VXü�^ZûZ`!Y U�nEfh^�nhaÉV�� - [¶aÉ^Z^�f
fhÿ�^�nh^���`�gonh^ZaÉ^Zb�fÔ[���^Zb�^�n"��pjûZ[�b!VX^�n"��U�fhgÆ[�bÔc�fhÿ!^�VX`!a�[��!fhÿ�^

² ú�½>ù#± í õ v ò
1 Ã�·�È_À�Åiµ_Ã�¾�µ�¸ÕµHÖÊ·¨¹�Á¶¿É¾�½!Ç�µ�3 â Ç ÔQ5 ¾�Â%Å ·¨¸>Ø
¼�µ�ºA3 â Ç �5 ¿%¸>¼]ÃÄÀ!Á!µ�ºhµ�3 â Ç �;5
U�YÆý�^��![%V	[���fhÿ�^(�!g�/Õ`�VX^MU%b��/VXü�^Zû�`�YiU�nHü�U�nXf�aE`�V�fÑý�^MYÆ^ZVXV
fhÿ�U%b7¼�� - ÿ�^ �
	��� gÆV�fhÿ�^ZbÕ × Ë d�q c f jke Vgf Ç � r�e £�^ f [� ÐsÀ!¼ Ê � r1e £�^ f [ Ä Í ¿ �Ïc } Í Ò ÀkÆ Ä Í  nh^�VXb�^ZYgÀ�ë ¸ Ä$ÝÀ���� Ä8v^�nXf�U�gÆbÉa]U�fh^�nhgiU%YÆVZc�U%VK�¨[�n�^$@�U�aÉü�YÆ^�YiU%û��m`!^�nh^��j[�ý�E�^Zû�fhVZc
nh^$0>^Zû�f]VXÿ�U�nhüNaÉgonXnh[�nægÆa]U*��^ZV��¨[�nàYiU�n"��^£�mgi^$��gib �éU%b ��YÆ^ZV# 2 � - [HVXgiaE`�YiU�fh^�fhÿ�gÆV�ü�ÿ�^�b�[�aÉ^�b�[�bdc�U�b�p1[��dfhÿ�^�ü�nh[�ü�[�VX^���+	��� V¯ûZU%b1ý�^�VX`!ü�ü!Yi^�aÉ^Zb�fh^��jý�pEU%bMg���^�U%Y�aÉgonXnh[%n�gÆbEfhÿ!^��[�YÆYÆ[���gib ����UZpM³Õ × Ë �Ïe _a_�`�_a[ } jk[gl f e `�l Ç Õ × ÀU´ Â µ Ä ÐsÀ!¼ Ê � ÀU´ Ä�Ä Í Õ × Ë e r1[yc�q �Ïe _a_a`�_ ÀU´ Â µ Ä$ÝÀ��;� Ä
\Ñ[%fh^Ofhÿ>U�f¶fhÿ�^�^1@mfh^Zb�VXgÆ[�b gÆV¶YÆgÆaÉgÆfh^�� ý�pNfhÿ!^ «�aÉgiVXVXgÆb �
U�YÆý�^��![�¬�[��Õfhÿ�^�[�nhg3�%gÆb>U%Y �+	��� � - ÿ�^ �
	��� [��Õfhÿ�^�g3��^�U%Y
aÉgonXnh[�n�giVâU � gÆn�U�û��¨`!b�û�fhgÆ[�b�³

Õ × Ë e r1[yc�q �Ïe _a_a`�_ ÀU´ Â µ ÄKÇ  nh^ZVXb�^ZYUÀ�ë ¸aÄ ÍRý&ÀU´ ¸ Ê µ Ä
ûZ[%V�ë Ý À���� ÄH ö � ö�x í ø í ±�²�ÿ�ú¨® í ñ ´ ² S  í ±�°Zú�² øÞS ð ñ í ÿ�®- ÿ!^=Ò ÀkÆ Ä �¨`!b�û�fhgÆ[%bEû�U�bHý�^�aÉ[%b�[%fh[%b�^�gÆb�û�nh^�U�VXgÆb��ÑU%V)�v^ZYÆYU�T�bãfhÿ!gÆVÉû�U%VX^¶fhÿ!^ành^10>^�û�fh^��ãn�U��!giU%b!ûZ^¤��gÆYÆY_ÿ>U���^æVXa]U%YÆYÆ^�n

VXYÆ[%ü�^OU%V]fhÿ�^/gÆb�ûZg3��^Zb�flU%b��%YÆ^5û�ÿ>U�b��%^ZVlfhÿ�U%bãfhÿ�^/ûZ[%VXgib!^��`�b!û�fhgÆ[�b¶[%ý!f�U%gÆb!^��¢��nh[%a fhÿ!^ S U�aMý�^�nXfhgiU%bæaÉ[��!^ZY�c ��ÿ�gÆû�ÿ
û�[�b ��[%nhaÉV1fh[5fhÿ�^¶aÉ^�U�VX`!nh^ZaÉ^�bmfhVM`�VXgÆb��*U*ûZ^�nXf�U�gibçûZYiU%VXV
[*��a]U�fh^�nhgiU%YÆVZc�gib!ûZYÆ`���gib �Eû�^�n�U%aÉgÆû�c���U�YÆYÄc&�¨[�U%a¶cmûZYÆ[�fhÿÔc�^�fhû��� `�^�fh[Éfhÿ�^jYi[�ûZU%YÊgÆbmfh^�nXnh^10>^Zû�fhgi[%b�V_qv^ZVXü�^ZûZgiU�YiYop£�¨[�n��%nh^ZU�f
gÆb!ûZg3�!^Zb�f�U%b ��YÆ^ZV�qæfhÿ�^ZVX^éa]U�fh^�nhgiU%YÆV�nh^10�^Zû�f�aÉ[%nh^-YÆg���ÿ�f
ý�U%û�:?��U�n���VZc!fhÿ�U%b»�¨[%n���U�n���VÑgÆbàfhÿ!^	aÉgonXnh[%n��!gonh^Zû�fhgi[%b �5Ñnh^Zb]^�f���U%Yk� #�# U%YÆVX[Mü�nh[�ü�[%VX^��]UjaÉ[���^ZY ��[%n�fhÿ!^ZVX^âf�p�ü�^ZV
[*�_a]U�fh^�nhgiU%YÆV��K<_^�nh^¶U£�!g�/Õ^�nh^Zb�f1U%ü�ü�nh[�U�û�ÿãgÆV1ü!nh^ZVX^�bmfh^����- [æ[%ý!f�U%gÆbOVX`�û�ÿ�U]aÉ[���^ZY�cÕYÆ^�f�`�V_U%VXVX`!aÉ^Efhÿ>U�f_fhÿ!^EYÆg���ÿ�f
VX[%`!nhûZ^�gÆV�ü�YiU�ûZ^���gÆbHfhÿ!^K��gÆ^1��ü�[%gÆbmf���eâbHU%ü!ü!nh[�ü�nhgiU�fh^K�¨`�b!û�q
fhgÆ[%b<[���fhÿ�^1nh^$0>^Zû�fh^���n�U���g U�b�ûZ^Éfhÿ�U�fjÿ>U�VMU4«�VXaÉ[�[%fhÿ�^�n"¬
VXYÆ[%ü�^jfhÿ�U%bàfhÿ!^ S U%aEý�^�nXfhgiU%b/aÉ[��!^�Y#gÆV_ûZ[%V # V&þ ës��ÿ!^�nh^�ë

VWCX�Z�[)\?^�_a`�b�_ac�d�Z1e Vgfihifaf ` V e c!jke `�l # N�N�N
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² ú�½�ù#± í õ o ò�q ¾�µ�¸�µ]ºXµ�¸�¼�µ�ºXµh¼O½mÃ�·�¸mÌ¶Î�½�ÃhÃh·Ä¿%¸-º�»%½�Åiµ�¹�¹�µl·¨¸>¾ZÅ ½�¼�·¨¸mÌO¿lÌ�»�ÅÆ¼�µ�¸é¹s¿%¸�Ù�3 â Ç ¼�Ò;5 ÛâÃh·�Å Ü%µ�º]Çh¿%Ã�µHÀ>ÅÆ¿%¸Õµ¬3 â Ç �5 Û¿�Å ½mÈM·�¸�·¨½mÈÿ3 â Ç �;5 ÛÊÃh·�Å Ü%µ�ºA3 â Ç �;5 Ûv¾h»�À�À!µ�º�3 â Ç ¼R�;5 ¿%¸>¼MÌ�»�ÅÆ¼�µ�¸ 3 â Ç Ô*Ò�5 ÃÄÀ!Á!µ�ºhµ�Ã
gÆVvfhÿ�^âU�b���YÆ^	[*�Õfhÿ�^âYig��%ÿmf�U%b��É[*�Ôfhÿ!^âb![%nha]U�Y���^Zû�fh[�nhV�U%b��� gÆV1fhÿ�^¶VXaÉ[�[�fhÿ�b!^ZVXVÉü>U�n�U%aÉ^�fh^�n��ØT�bçfhÿ�^àYigÆaÉgofÉû�U�VX^/[���.Ç ÒMfhÿ�^��!g�/Õ`�VX^Hû�U�VX^EgÆVÑ[�ý!f�U�gÆb�^��Õc��¨[�n_fhÿ!^ ��Ç ¼HYÆgÆaÉgÆf
û�U�VX^(��^(��^�f�U¢��giV�:à[���ûZ[�b!V�f�U%b�f_n�U��!giU%b!ûZ^�cM��ÿ�gÆû�ÿ5gÆV	YÆg�:�^
fhÿ�^O�¨`!YÆY�aÉ[�[%b � - ÿ!gÆV�VX^ZYÆ^Zû�fhgÆ[�b�Yi^ZU��!VÑfh[lfhÿ!^���[�YÆYÆ[���gÆb � Ò�¨`!b�û�fhgÆ[%b ³Ò�ÀkÆ ÄØÇ ôo¼ Ê ¼ Æ Ô À , õ V&þ Ñ , Â Ò(Ó � Ó¦¼ Ý À���� Ä
¨ b ��[%nXfh`!b>U�fh^�YÆp�c�fhÿ�^�VX^âaÉ[���^ZYÆVØ�![�b�[�f�VhU�fhgÆV!��p1fhÿ!^�ü!nhgÆb!q

ûZgÆü�YÆ^�[���fhÿ�^�ûZ[%b�VX^�n"�%U�fhgÆ[�bM[��Õ^Zb!^�n"�%p�c%VX[���^�ÿ�U���^vfh[	aÉ[���q
g���p.��^1�>b!gofhgi[%bDÀ���� Ä � - ÿ�^âVXgÆaÉü�YÆ^ZV�fØ��UZp1[*�#ûZ[�nXnh^Zû�fhgÆb���fhÿ!giV
gÆV�fh[1YÆgiaÉgof�fhÿ!^ �
	��� ��gÆfhÿ¶UMûZ[�b!V�f�U%b�f���eÑb�[�fhÿ�^�n�ü�[%VXVXgoq
ý�YÆ^MU%ü�ü�nh[�U�û�ÿ5gÆV_fh[æû�[�b�VXg3��^�n�fhÿ�^sR¶U%û S U%`�nhgib2n V�VX^�nhgÆ^ZV�[��
fhÿ�^G��`�b!û�fhgÆ[�bÔc%nh^�f�U%gÆb!gib ��[�b!YÆpMU'�¨^$�çfh^�nhaÉVZc�VX`�û�ÿEfhÿ�U�f�fhÿ�^
fXnh`�b!û�U�fh^��EVX^�nhgÆ^ZVK��gÆYiY!ý�^�YÆ^ZVXV�fhÿ�U%bjfhÿ�^�[�nhg3�%gÆb>U%Y �¨`�b!û�fhgÆ[�b��
eÑVEU%bé^1@!U%aÉü!Yi^%c�YÆ^�f1`!VMûZ[%b�VXg3�!^�nMfhÿ�^]û�U�VX^¢��ÿ!^Zb-fhÿ�^�¨`!b�û�fhgÆ[%b¶gÆVâû�YigÆü!ü�^��àý�plUMûZ[%b�V�f�U%b�f�³

Õ × ÀU´ Â µ ÄKÇ ¿ �Ïc } ÍZaÉgib � ôo¼ Ê ¼ Æ Ô À , õ V*þ Ñ , Â Ò �Ïc }�� Â
À���, Ä��ÿ�^�nh^OÒsÓ � Ó¦¼��- U%ý!Yi^��Éÿ>U%V_ý�^Z^Zb£��^Zb!^�n�U�fh^��5`!VXgib �lUlûZYÆgÆü�ü!gÆb��.��ÿ�^�nh^

fhÿ�^��¨`!b�û�fhgÆ[�b.��U�V�f�U�:�^�blfh[jý�^_ûZ[%b�V�f�U�bmfâU�ý�[���^'Æ Ç ¼ Ý ,mc
fhÿ>U�fvgÆVBÒ �Ïc } Ç Ò À!¼ Ý , Ä � - ÿ!^�¿ �Ïc } �%U%YÆ`!^6��U%VP��^�fh^�nhaÉgÆb�^��VX`�û�ÿ/fhÿ>U�f_fhÿ�^Ha]U�@!gÆaE`�aÎ�%U%YÆ`�^j[���fhÿ�^EU%YÆý�^���[ægÆV(¼��  [%n
fhÿ�^àU%ý�[���^æaÉ[��!^ZY�c�fhÿ!giVMgiV1nh^ZU%û�ÿ�^��ãU%Y���UZp�VA�¨[�n.Æ Ç Ô?�- ÿ�^MaÉgib!gÆaM`�a [���fhÿ!^1U�Yiý�^��![¶gÆVjU%Y���UZp�VHgÆb¥Æ Ç Ò&��k�[�c
ûZ[%bmfXn�U�nXp�fh[Ñfhÿ!^vû�U�VX^�[��>aÉ[%b�[�fh[�b�^
�!^Zû�nh^�U%VXgÆb����¨`!b�û�fhgÆ[�b!VZc
fhÿ�^âü�`�nh^'��g�/Õ`�VX^âûZ[�aÉü�[%b�^Zb�f�gÆVP��^1�>b!^��1ý�p1fhÿ�^âû�U�VX^_ûZ[�nXq
nh^ZVXü�[%b��!gÆb �Mfh[AÆ Ç Ò&�- ÿ�^]aÉ[��!^ZY+�!^$�>b�^��*ý�pB��[%nhaM`!YiU¥À���, Ä û�U�béU%Y���UZp�VMý�^

² ú�½>ù#± í ®*y ò�� Ç)��µh¾�¹�Ã 3 �ªÇ ¼ Û �BÇ Ò Ý ��� Û �BÇ Ò Ý � Û �BÇÒ Ý Ô��;5 ºhµ�¸�¼�µ�ºhµX¼ã½mÃh·¨¸mÌ5Ì�µ�¸Õµ�º�¿�Å ·¨Ã�µX¼��Ô¿%ÈÉÇ�µ�º�¹�·Ä¿%¸ Í�Î�ÏÑÐ�Ã
¾h»%ÈÑÀ>½m¹�·¨¸mÌO»%¸�Å Â¶¹�Á�µ]¼%·¨ºhµX¾�¹Ñ·�Å¨Å ½mÈM·¨¸>¿%¹�·Ä»%¸-µ¨ê_µX¾�¹�Ã�Ò�Ý�¸<¹�Á�µ
½�À�À!µ�ºÑ·¨ÈÉ¿ZÌ�µÑ¹�Á�µ_Å ·iÌ�Ám¹¯Ã�»%½mºX¾�µ	·¨ÃÑ¿%¹¯¹�Á�µ_Ü�·sµ�ÖOÀ�»%Ãh·¨¹�·Ä»�¸�Û�·¨¸
¹�Á!µjÅÆ»%Övµ�º�·¨È1¿�Ì�µ�¹�Á!µ�ºhµM¿%ºXµj¹�Ö�»HÀ�»�·¨¸�¹vÅ ·iÌ�Ám¹�Ã�»�½�º�¾�µ�Ã

��^ZVXû�nhgÆý�^��/U�VÑfhÿ�^�VX`!a+[���U S U%aEý�^�nXfhgiU%b/aÉ[���^ZY���gofhÿ5U%b
U�YÆý�^��![�À¨nh^10>^�û�fhg���gof�p Ä [�� � ¢ e £�^ f [ U�b���[��>UâûZ[%aÉü�YÆ^ZaÉ^Zb�f�U�nXpaÉ[���^ZYk� - ÿ�^�U%YÆý�^���[_[*�!fhÿ!^�YiU�fXfh^�n¯gÆV�WZ^�nh[6�¨[�nÏÆ Ç ÒÑU�b���gof
gÆV�UMaÉ[%b�[�fh[�b�^_gib!û�nh^�U�VXgib �A�¨`!b�û�fhgÆ[�bæ[��ÏÆ7�  [%nhaM`!YiU»À��;, Ä
ÿ�U%VÊfhÿ�^�VhU%aÉ^�ý�^�ÿ>U��mgi[%`!nvU%V�fhÿ�^�aÉ[��!^ZY �!^$�>b�^��Mý�pM^���`�U�q
fhgÆ[%b¥À���� Ä c>^1@�ûZ^Zü�f6�¨[%nâfhÿ�^�Æ ! ¼ Ý ,���[�a]U%gÆb���T�bàfhÿ�^�û�U�VX^
[*�'¼ Ý ,£ÓÉÆ Ó Ômcdfhÿ�^jnh^10>^�û�fh^��5n�U��!giU%b!ûZ^A�¨[�nHfhÿ�^ÉU�ý�[*��^
aÉ^�bmfhgÆ[%b�^��MVXü!ÿ�^�nh^6��gÆYÆY�ÿ>U���^âU(��^Zû�nh^�U�VX^Ñü�nh[�ü�[�nXfhgi[%b>U�YÕfh[
fhÿ!^	ûZ[%VXgib!^��¨`!b�û�fhgÆ[�b¶U�f U Ò Â ¼ W �- ÿ!^¤«y��`�YÆYÔaÉ[�[%b�¬EYigÆaÉgof�û�U�VX^�aÉ^�U%b!Vvfhÿ>U�fP�¨[%nÑUjVXü�ÿ�^�nh^

VW¦X�Z�[)\�^1_a`�b�_ac�d�Z�e Vyfihif�f ` V e c!jae `�l # N�N�N



� m � ���%��������� � �����'������� �����i�X�������a����� ���Ï�.�¯�k�¯�!�$�k�������6�l�$����� �6� �3���������!� �X���������k�������'� ���v�m� � ��¡� ¿ �Ïc } Õ �Ïc } � r1e £�^ f [
Ò ¼RP;� ¼�� Ò ¼�� Ò S e'R �\JØ	Ø- T|eÑ\Ò&��¼ Ò�� ��Ò����� ¼���¼�Ô�����Ò Ò&� ,�������,Ò&� Ô Ò�� Ô;,�,���, ¼�� Ô;��Ô�¼�¼Q� Ò&� ,����^��ÔÒ&� � Ò�� Ô;��,�,�� ¼�� &¼Q��,�¼�Ô Ò&� ,�Ô�,���,Ò&�  Ò�� Ô;��Ò��&¼ ¼�� �;,�Ô�,���, Ò&� ,�Ò���Ò�ÔÒ&� � Ò�� Ô���¼�Ô�� ¼�� �;��,^����¼ Ò&� ���&¼R,��Ò&� � Ò�� Ô;��Ô*Ò�Ò Ô�� Ò�¼�Ò�^��� Ò&� �������;Ò&� � Ò�� Ô���Ô���� Ô�� Ô������;�� Ò&� �����&¼T�Ò&� � Ò�� ÔQ^����� Ô�� �;�^�;^�; Ò&� ��Ò��^�;�Ò&� , Ò�� Ô;��^��� Ô�� ����Ò������ Ò&� �;������¼¼�� Ò Ò�� Ô�Ô������ �&� Ô*Ò�Ô��;��� Ò&� ������,�� ¬ o¨_S#S RD5�5_\�¬¸ ²�Ïÿ í7ß ò Úâ¿%º�¿%È]µ�¹�µ�º�Ãj»�Ç�¹s¿%·�¸ÕµX¼_ËZ»�º�¹�Á�µ_Ì�µ�¸�µ�ºX¿�Å ·¨Ã�µX¼��Ô¿%ÈÉÇ�µ�º�¹�·Ä¿%¸5ÈÉ»�¼�µ�Å

gÆYÆYi`!aÉgÆb>U�fh^��=� nh[�a fhÿ!^¢�mgÆ^1��ü�[�gÆb�fÉfhÿ�^]n�U���giU%b�û�^9��gÆYiY�ý�^
ûZ[%b�V�f�U%b�f�c�[�b!YopàU�f�fhÿ�^_a]U�n"��gÆb!VG��giYÆY �!^Zû�nh^�U%VX^'��gofhÿàUEûZ[�q
VXgÆb�^Hû�ÿ>U�n�U�û�fh^�n�� - ÿ�^���g3��fhÿ¶[*��fhÿ!^D«|ûZ[%VXgÆb�^�qÄnhgÆb���¬lûZU%b¶ý�^
ûZ[%bmfXnh[%YÆYi^��1ýmpjaÉ[���g�� p�gib �OÒ �Ïc } ��Tsf�giV�U��&�mgiVhU�ý�YÆ^�fh[	û�ÿ�[�[�VX^fhÿ�^'��U�Yi`!^�[�� � gÆb¢��[%nhaE`�YiU9À���, Ä fh[1ý�^	YÆ^ZVXV�fhÿ>U%b7¼�� [%nÑfhÿ�^EU%ý�[���^jaÉ[��!^ZY�cdU���[�[���U%ü�ü�nh[�@!gÆa]U�fhgi[%b/[���fhÿ�^
gÆaÉü�[%nXf�U�b�ûZ^¶VhU�aÉü�YÆgÆb���giVÉfh[B��^Zb!^�n�U�fh^£��gÆnh^�û�fhgÆ[�b�V£Àa��gofhÿ
U4«|û�[�VXgÆb�^�¬B�!gÆV�fXnhgÆý�`�fhgÆ[�b Ä YÆg�:�^]gib<fhÿ!^Éû�U%VX^l[���fhÿ!^ S U%a1q
ý�^�nXfhgiU%b aÉ[���^ZYÑU%b��ãfh[<`�VX^OU�b×U%ü�ü�nh[�ü�nhg U�fh^OaM`�YofhgÆü�YÆgÆ^�n
ûZ[�nXnh^Zû�fhgÆ[�b¤�¨U%û�fh[�n���[%nâ^�U%û�ÿàn�UZp?�o öNï ð ø ³�ÿ¨ù#®�ú ð ø ®É² ø ñ � ùÔ°�ù#± íOïEð ±
	- ÿ�^5ü>U�ü�^�næü!nh^ZVX^Zb�fhVæU-b�^1��c�VXgÆaÉü!Yi^5U�b��N`�b!g��>^��4��^1��q
b�gofhgÆ[�bB�¨[%nE[�ý�f�U%gÆb�gÆb �/U¤��[�[��¥�mgÆVX`>U�YvU�ü�ü!nh[�@�gÆa]U�fhgÆ[�b7�¨[�n
a]U%b�pHa]U�fh^�nhgiU%YÆV�� - ÿ!^�b�^1�ãaÉ[��!^�Y!ûZYiU�VXV�û�U�b1ý�^�`!VX^��M^�U�V�q
gÆYopégibãfhÿ�^æa]U�E|[%nhgof|pé[*�_fhÿ�^æûZ[�aÉaÉ^�nhûZgiU%Y�ü!nh[��%n�U%aÉV�� � p
U%YÆYÆ[���gÆb��*fhÿ!^àgÆb�fh^�n�U%û�fhg���^¤�!^1��b�gofhgÆ[�bã[��_fhÿ!^NÒ ÀkÆ Ä ÿ!g���ÿ!q
YÆg���ÿ�flü!nh[���YÆ^¤�¨`�b!û�fhgÆ[�b!VZc �
	��� û�ÿ�U�n�U�û�fh^�nhgÆV�fhgÆûZVæûZU%bNý�^
VXü�^ZûZg���^��àgÆb¶UMb!^1� a]U%b!b�^�n��� `�^�fh[Hfhÿ�^Zgon�VXgÆaÉü!YigÆûZgof�p�c�fhÿ�^�ûZ[%aÉü�`!f�U�fhgÆ[�b]ûZ[�V�f�[��dfhÿ�^
b�^$� aÉ[��!^ZYÆV/gÆV¶YÆ[����	eâûZûZ[�n��!gÆb��ãfh[ç[%`!n¶nh`!b�b�gÆb �ãfhgÆaÉ^
aÉ^�U�VX`!nh^ZaÉ^Zb�fhVH`�VXgÆb �B<Ñ^Zû$:mý�^�nXfRn V �
	��� �mgÆ^1��^�n$,�,%c¯fhÿ�^
ûZ[%aÉü�`!f�U�fhgÆ[�b>U�YâfhgÆaÉ^/[*��fhÿ�^/b�^$�ëaÉ[���^ZYÑgÆVlü!n�U�û�fhgÆû�U%YÆYop
^���`>U�Y#fh[Éfhÿ�^�fhgÆaÉ^H[��Êfhÿ�^(%�ÿ![�b �%q � YÆgÆb�bOaÉ[��!^ZY#U%b��¶ÿ>U%Y��
[��Ôfhÿ�^âfhgiaÉ^Ñ[��Ôfhÿ�^�H<U�n��]aÉ[��!^ZYk��T�aÉü�[%nXf�U%b!ûZ^_VhU�aÉü�YÆgÆb���c
[�b�fhÿ�^1[�fhÿ�^�njÿ>U�b��ÕcÔgÆVHVXgÆaÉü�YÆ^�nEU%b��7�¨U%V�fh^�n��¨[�nEfhÿ!^1b�^1�
aÉ[��!^�YÕfhÿ�U%b»�¨[%nÑü!nh^1��gÆ[%`�V�aÉ[��!^ZYÆV��5_b�^5[��Mfhÿ!^*ü�nh[�ý�YÆ^ZaÉVæfh[çý�^�VX[�Y���^��×ý�pC�¨`!nXfhÿ!^�nành^�q
VX^�U�nhû�ÿægiV�fh[MgÆb���^ZV�fhg���U�fh^'��ÿ�gÆû�ÿæ[*�#fhÿ�^Ñü�ÿ�p�VXgÆû�U%YÆYop]ü�YiU%`!VXgoq
ý�YÆ^ �
	��� VOÀa�¨`!Y���YÆYigÆb �1nh^ZûZgÆü!nh[�ûZgof�p�c>^Zb!^�n"�%pàûZ[�b!VX^�n"��U�fhgÆ[�b
U%b��æb![�b!qsb!^���U�fhg3�mgof|p Ä û�U�b¶ý�^���^1�>b!^��æý�plVX`�gof�U%ý!YÆ^

À)µ�ÀU´ Ä$Â ÆªÀ!Í Â Í Ä$Â �oÀ Ã�Ä�Ä
fXnhgÆü�YÆ^�fhV�À�VX^�^ÑVX^Zû�fhgi[%bÃ� Ä �meÑb![%fhÿ!^�n�gÆaÉü�[%nXf�U�b�fG��`�^�V�fhgi[%b]giV��ÿ�gÆû�ÿàa]U�fh^�nhgiU%YÆV�û�U%bæý�^	aÉ[��!^ZYÆYÆ^��æU%V�fhÿ�^ÑVX`�a¶c�ü!nh[���`�û�f

U�b��O[%fhÿ!^�n���^�b�^�n�U�YigÆVhU�fhgi[%b�Vj[���fhÿ!^MgÆb�fXnh[��!`!ûZ^��/nh^10>^Zû�fhg3��^
U�b��]nh^�fXnh[%qÄnh^10�^Zû�fhg���^	aÉ[���^ZYÆV��v ö ¬æ³
	 ø ð!ï ÿ í ñ)½ í S í ø °Z®- ÿ!gÆV ��[�n":þÿ>U�V ý�^Z^�b VX`�ü�ü�[�nXfh^��þý�p fhÿ!^ \_U�fhgÆ[�b�U%Y
kmûZgÆ^Zb�fhg��>û 	 ^ZVX^�U�nhû�ÿ  `�b�� Àg5 - rHe nh^1�y� \_[ ��³  Ò�¼Q�������c- Ò�Ô�,�¼R�^� Ä U�b��çfhÿ!^OeÑ`�V�fXnhgiU�b!qg<_`!b���U�nhgiU%b eâû�fhgÆ[�b  `!b��À¨nh^$�S� \_[&�3³'Ô;,��[�NU%b�����Ô�[�`*, Ä � - ÿ�^<U�`!fhÿ![%nhV¶fhÿ>U�b�: J nhgÆû
S U*��[%nXfh`�b!^9�¨[�nÉfhÿ�^¶gÆaÉü!Yi^�aÉ^Zb�f�U�fhgÆ[�bé[��_fhÿ�^9�%^Zb�^�n�U%YÆgÆVX^��
S U%aEý�^�nXfhgiU%blaÉ[��!^ZYÕU�b����¨[%n�fhÿ!^Ñnh^Zb��!^�nhgÆb��E[��¯gÆa]U*��^ZV�¼T,
U�b�� Ô�Òmc�U%b��=%¯U�`�Y6<_^Zû�:mý�^�nXfs��[%nÉü�nh[���g3��gib ��ÿ!gÆV �
	���
^��!gofh[%n»��ÿ�gÆû�ÿNÿ>U�Væý�^Z^�bN^1@mfh^Zb���^��NU�b��3`!VX^��çfh[-û�nh^�U�fh^
fhÿ!^ �
	��� ûZ`�n"��^ZV��
° í?�sí ± í ø ³ í ®
¼�� 	 � S ^1��gÆV��(R¶U�:mgÆb��àVXÿ�U���^�nhV	aÉ[%nh^jü�ÿ�p�VXgÆû�U%YÆYopOü�YiU�`!q

VXgiý!YÆ^���T|b Î�µ�¸�¼�µ�º�·¨¸�Ì*ÓÕµX¾�Ám¸�·Äå�½�µ�Ã�� ��� c�ü>U*��^ZVr�������Ô�c¼R,�,��&�Ô?� %Ï� � ^Zû�:ma]U%b!b¶U%b��¶e��>k�ü!gÆWZWZgÆû�ÿ!gÆb�[ � ÓÔÁ�µ q ¾h¿%¹�¹�µ�º�·¨¸mÌ
»�Ë Í ÅiµX¾�¹�ºX»%È1¿�Ì%¸Õµ�¹�·Ä¾ ´à¿%Ü%µ�ÃÑË�ºX»%ÈèÎ�»�½�Ì�Á q ½mº¨Ë�¿�¾�µ�Ã �R¶U%û�RàgÆYÆYiU%bÔc)¼R,����&���� rA� - [%nXn�U%b!ûZ^HU%b��¤RB�>k�ü�U�nXnh[����+5�/�qsVXü�^ZûZ`�YiU�nÑü�^ZU�:mV
gibjfhÿ�^P��gonh^Zû�fhgÆ[�b�U%Y���gÆV�fXnhgiý!`!fhgÆ[�bE[��>nh^$0>^Zû�fh^��jfhÿ�^�nha]U%Y�!gÆV�fXnhgÆý�`!fhgÆ[%b ��� »%½mº�¸�¿�Å�»�Ë��HµX¿%¹HÓ�º�¿%¸�Ã Ë�µ�º�� Ó�ºX¿%¸!Ã�Ø
¿�¾�¹�·Ä»%¸!Ãj»�Ë	¹�Á�µ 1Oq ó Í c!ü>U��%^ZV'Ô�Ô����&Ô;��Ò�cMR¶U�p7¼R,������&� 	 �Ø8v[�[�:éU%b��<rA� - [%nXn�U�b�ûZ^��-e:nh^10>^�û�f�U%b!ûZ^æaÉ[���^ZY�¨[%n#ûZ[�aÉü!`!fh^�n �%n�U�ü�ÿ!giû�V�� ô�»%ÈÑÀ>½m¹�µ�º ¾ º�¿�À!Ám·Ä¾�Ã c�¼Q��À�� Ä c¼R,���¼���?���(��<Ñ^�c�rA� - [%nXn�U�b�ûZ^�c  �mk�gÆYÆYigÆ[%bÔcmU�b�� � � � nh^�^Zbmý�^�n"� �
e ûZ[%aÉü!nh^Zÿ!^Zb�VXg���^1ü!ÿ�p!VXgÆû�U�YÊaÉ[��!^ZYK�¨[�nEYÆg���ÿ�fHnh^10�^Zû�q
fhgi[%b � ô�»%ÈÑÀ>½m¹�µ�º ¾ ºX¿�À�Ám·Ä¾�Ã c�Ô���À� Ä ³�¼Q������¼R���mcK¼R,�,�¼������� � - �¯rHU�E�gopmU&�<eÑb!giVX[�fXnh[�ü!giû]nh^10�^Zû�fhgÆ[�bãaÉ[��!^ZYÆV��7T|b
ô�»%È_À>½m¹�µ�º ¾ ºX¿�À!Ám·Ä¾�Ã�3 q Ý ¾�¾ Î 1 Ú���� �^� Ú�ºX»�¾�µhµX¼�Ø
·¨¸mÌ%Ã 5�c>ü�U���^�VO¼R����Ô�¼�c)¼R,������

VWCX�Z�[)\?^�_a`�b�_ac�d�Z1e Vgfihifaf ` V e c!jke `�l # N�N�N



� ���%��������� � �����'�������)�����i�X�������a����� ���K�.�¯�k�¯�!�$�k�������P�l������� �6�������O�����!� �X���������k��������� ������� � ��¡ �ã���� � �GH<U�n��M�ÉRà^�U�VX`!nhgÆb��ãU�b��3aÉ[���^ZYÆgib �éU%b!giVX[�fXnh[�ü!giû
nh^10�^Zû�fhgÆ[�b�� ô�»%ÈÑÀ>½m¹�µ�º ¾ º�¿�À!Ám·Ä¾�Ã c�Ô�� ÀgÔ Ä ³ Ô��^� �&Ô���Ômc¼T,�,�Ô?��&� � � - �*%Êÿ�[%b��&��T|YÆYÆ`�aÉgÆb�U�fhgÆ[�b��¨[�n¯ûZ[%aÉü�`!fh^�n)�%^Zb�^�n�U�fh^��
gÆa]U��%^ZV�� ô�»%ÈMÈE½m¸�·Ä¾h¿%¹�·Ä»�¸�Ã5»�Ë/¹�Á�µ 1 ô#ó c'¼R�&³ ��¼�¼!���¼Q�mc)¼R,^�����,&��� �  � � YÆgÆb�b��éRà[��!^ZYÆVÉ[*�_YÆg���ÿ�fÉnh^10�^Zû�fhgÆ[�b=�¨[�nÉûZ[�a1q
ü!`!fh^�n�V�p�b�fhÿ�^�VXgiW�^��5ü!gÆû�fh`!nh^ZV��(T|b ô�»%ÈÑÀ>½m¹�µ�º ¾ º�¿�À!Á�Ø
·Ä¾�Ã'3 q Ý ¾�¾ Î 1 Ú��"� #$#�Ú�ºX»�¾�µhµX¼%·¨¸�Ì%Ã 5�c%ü>U*��^ZV
¼T,�Ô ��¼R,���c¼T,^���?�¼�Ò�� - �&H ÿ�gofXfh^��M�ÊeÑblgÆaÉü!nh[���^��ÉgÆYÆYÆ`�aÉgÆb>U�fhgi[%bàaÉ[���^ZY��¨[�n
VXÿ�U��!^��î�!gÆVXü!Y UZp?� ô�»�ÈMÈM½m¸!·Ä¾h¿%¹�·Ä»%¸!Ã<»�Ë*¹�Á!µ 1 ô#ó cÔ;� À�� Ä ³ �;^�%�����,�cK¼R,���Ò&�¼�¼��£RB�+5Ñnh^ZbéU�b��éki�¯\	UZpmU�n�� � ^�b�^�n�U�YigÆW�U�fhgÆ[�b3[*� S U%a1q
ý�^�nXfRn VNnh^10�^Zû�f�U�b�ûZ^LaÉ[��!^ZYk� ô�»%ÈÑÀ>½m¹�µ�º ¾ ºX¿�À!Á�·Ä¾�Ã3 q Ý ¾'¾ Î 1 Ú��&� �T� Ú�ºX»�¾�µhµh¼�·¨¸mÌ%Ã 5�clü>U��%^ZVCÔ;��,��&Ô;���c¼T,�,�&�¼�Ô?�'� � � ^�U�n�� U%b��(�&� 	 ��R¶U�@���^ZYÆYk� � g3�!gonh^Zû�fhgi[%b>U�YHnh^�q0�^Zû�f�U%b!ûZ^jaÉ[��!^ZYo�%U%YÆg3��U�fhgÆ[�b5U%b��¶`!fhgÆYÆgiWZU�fhgÆ[�b�� - ^Zû�ÿ!q
b!giûZU%Y 	 ^Zü�[�nXfâe  e S q -G	 q�����q���Ò��mc)¼R,������¼R��� J � S U��¨[%nXfh`!b�^�c!ki�  [�[�cmrA� - [%nXn�U�b�ûZ^%c�U%b�� � � � nh^Z^Zb�q
ý�^�n"�&� \_[�b�qsYigÆb!^�U�néU�ü�ü�nh[�@�gÆa]U�fhgÆ[%b [*�ành^10�^Zû�f�U�b�ûZ^��`�b�û�fhgi[%b�V�� ô�»%ÈÑÀ>½m¹�µ�º ¾ ºX¿�À�Ám·Ä¾�Ã¬3 q Ý ¾�¾ Î 1 Ú��)� �#
Ú�ºX»�¾�µhµX¼%·¨¸mÌ%Ã 5�cÕü>U*��^ZVO¼�¼R����¼�Ô��mco¼R,�,^�?�¼T&� S ��\Ñ^Z`�a]U�b�béU�b��3eO�Ê\_^Z`!a]U%b!b �ée+b�^1�+û�Y U�VXVÉ[��
ý�n��&�!aÉ[��!^ZYÆV)��gofhÿ(�¨U%V�fÊgÆaÉü�[%nXf�U�b�ûZ^�VhU%aÉü!YigÆb � � - ^Zû�ÿ!q
b!giûZU%Y 	 ^Zü�[�nXf -G	 q"¼T����qSÔ�q�,���qSÔ;�cGT�b�V�fhgofh`!fh^¶[*��8v[�a1q
ü!`!fh^�n � n�U%ü!ÿ�gÆûZVZc+*ÑgÆ^Zb�b�U ¨ b�g���^�nhVXgÆf�pj[�� - ^Zû�ÿ�b![�YÆ[���p�c¼T,�,����+�P�P��� û��&� fh`���gÆ^Zb�� U%û�� U�fãê?�¼Q�?� 	 �  � - [�ý�YÆ^�n�c S �%\Ñ^Z`�a]U�b�bdc*RB��k�ý�^�nXf�c%U%b��OHî��%Ê`!nXq��U�fhÿ�[*�¨^�n���e9b!^1�î��[%nha]��U%û�fh[%nHU�b>U%YÆ[��%p5U%b��/gÆfhV	U%ü!q
ü!YigÆû�U�fhgÆ[�b×fh[ãV�fh[�û�ÿ>U�V�fhgÆûª��YÆ[%ý>U%Y�gÆYÆYÆ`�aÉgÆb>U�fhgÆ[�b U%Y���[�q
nhgofhÿ�aÉV��KT�b Î�µ�¸�¼�µ�º�·¨¸�Ì�ÓÕµX¾�Ám¸�·�å�½>µ�Ã,� �-� c�¼R,�,��&�¼R��� � �>kM� T|aÉaÉ^�YÄc RB�  ��8v[�ÿ�^�bÔc�U�b�� � ��%o� � nh^Z^Zbmý�^�n"�&�
eNn�U���gÆ[�VXgof|p]aÉ^�fhÿ![��A�¨[%n�b�[�b�qy�!g�/Õ`�VX^�^Zb��mgonh[�b�aÉ^�bmfhV��T�b ô�»�È_À>½m¹�µ�º ¾ º�¿�À!Ám·�¾�Ã�3 q Ý ¾�¾ Î 1 Ú��.� �?�_Ú�º�»�¾�µhµX¼�Ø
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Abstract

A method is presented that takes as an input a 2D microfacet ori-
entation distribution and produces a 4D bidirectional reflectance
distribution function (BRDF). This method differs from previous
microfacet-based BRDF models in that it uses a simple shadowing
term which allows it to handle very general microfacet distributions
while maintaining reciprocity and energy conservation. The gener-
ator is shown on a variety of material types.

CR Categories: I.3.7 [Computing Methodologies ]: Computer
Graphics—3D Graphics

Keywords: Reflectance & Shading Models, Rendering

1 Introduction

Physically-based rendering systems describe reflection behavior us-
ing thebidirectional reflectance distribution function(BRDF) [7].
At a given point on a surface the BRDF is a function of two direc-
tions, one toward the light and one toward the viewer. The char-
acteristics of the BRDF will determine what “type” of material the
viewer thinks the displayed object is composed of, so the choice of
BRDF model and its parameters is important. There are a variety of
basic strategies for modeling BRDFs that we categorize as follows.

Direct measurement. BRDFs can be measured directly us-
ing gonioreflectometerswhich mechanically vary the direction to a
small light source and a spectral sensor and thus collect a large num-
ber of point samples for the BRDF [7]. Simpler and less accurate
devices can also be constructed using CCD imaging devices [26].
More complex CCD devices can also be used which gather data
quickly with accuracy almost that of full gonioreflectometry [12].
If enough is known about the microstructure of a material, a BRDF
can be simulated by using avirtual gonioreflectometer, where sta-
tistical ray tracing followed by density estimation is used to create
BRDF data [3, 5, 27].

Empirical methods. There exist a variety of purely empirical re-
flection models, the most familiar being the models introduced by
Gouraud [6] and Phong [15]. These two initial models were meant
to be used with hand-chosen parameters, and thus these parame-
ters are intuitive. A variety of more complex methods have been
introduced to improve characteristics of the Phong model for effi-
ciency [19], to include anisotropy [26], and enforce physical con-
straints such as reciprocity [9]. Other models have been developed
to fit measurement data as opposed to being intuitive [10].

Figure 1: Images generated using the new BRDF model with un-
usual microfacet distributions. The BRDFs used to create these
images are both reciprocal and energy-conserving. The only illu-
mination is a small distant source, and the highlights will stay un-
changed if the spheres rotate about the axes through their north and
south poles.

Height correlation methods. In these methods a random rough
surface is a realization of some Gaussian random process. Such
a process can be described by its correlation function which is di-
rectly related to surface height correlations. This is the most com-
plete surface representation used in computer graphics. Some of the
most detailed descriptions of light scattering by a surface, including
wave optics effects, were obtained using this approach [8, 22].

Microfacet methods. Somewhere between the height correla-
tion methods and empirical methods lie models based on microfacet
theory [2, 4]. Microfacet models assume the surface consists of a
large number of small flat “micromirrors” (facets) each of which re-
flect light only in the specular direction. By computing the number
of visible microfacets at the appropriate orientation to specularly
reflect light from the source to the viewer, one can determine the
BRDF.

All of these methods have their place. In applications where
little is known about the low-level properties of the surface, mea-
surement is essential. Where physical optics effects are important,
height correlation methods should be used. Our interest is in visual
computer graphics applications which do not have obvious physi-
cal optics effects (e.g. metal with relatively large scratches, fabric).
The lesson from empirical models is that in many cases viewers are
not particularly sensitive to the fine details of light scattering as long
as the main character of the reflection is conveyed correctly. This
paper uses this aspect of human sensitivity to suggest a new micro-
facet model specifically intended to capture the main character of
reflection.

Microfacet models are able to capture the main character of re-
flection for surfaces whose appearance is dominated by surface
scattering. Although microfacet models lack the precision of height
correlation methods, they tend to be more intuitive with simpler ex-
pressions. However, to date there has been no microfacet model that
is reasonably general in its assumptions, maintains a simple formu-
lation, and conserves energy. In this paper we develop a model
with all of these characteristics by introducing assumptions about
surfaces that we believe are reasonable. These assumptions allow
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Figure 2: Geometry of reflection. Note thatk1, k2, andh share a
plane, which usually does not includen. On the left, the microfacet
can “see” in directionsk1 andk2 so it contributes to the BRDF.
On the right, directionk2 is blocked and the microfacet does not
contribute. Note that the microfacet distribution is not restricted to
height fields.

us to create a relatively simple formula for the probability that a
microfacet at a certain orientation is visible to the light/viewer. The
BRDF produced by this process is compact, reciprocal and energy-
conserving with only mild restrictions on the distribution of micro-
facet orientation (e.g., the very general distributions in Figure 1).

Our assumptions and guiding principles in relation to microfacet
theory are given in Section 2. Formalisms are developed in Sec-
tion 3. The key development of the paper, a simplified shadowing
term, is introduced in Section 4, and the resulting BRDF is derived.
Section 5 shows that this BRDF model conserves energy, and de-
rives a diffuse term to account for secondary and subsurface reflec-
tion. The model is applied to a variety of surfaces in Section 6. This
last section serves as a set of case-studies which both show how
the model can be applied, and that it is more general than previous
microfacet approaches. We believe the only other method which
is able to handle such a diverse set of surface microgeometries is
the “virtual gonireflectometer” approach involving explicit model-
ing of the surface structure and statistical averaging the results of
light scattering simulations.

2 Overview

The strategy behind our model is in balancing issues of practicality
and accuracy to produce a simple formulation that is still expres-
sive, reciprocal, and conserves energy. In this section we discuss
the basic ideas of microfacet models, as well as our strategy for us-
ing this theory to produce BRDFs. Important symbols used in the
paper are listed in Table 1.

Microfacet models assume that the surface consists of a large
number of small flat “micromirrors” (facets) each of which reflects
light only in the specular direction with respect to its own normalh
(Figure 2) and the overall appearance of the surface is governed by
two assumptions:

• the microfacet normals have an underlying probability density
functionp(h).

• a microfacet contributes to BRDF for a given pair of direc-
tions if and only if it is visible (not shadowed) relative to the
lighting directionk1 and the viewing directionk2.

The BRDF for a given direction pair(k1,k2) is determined entirely
by the Fresnel reflectance for that angle, the fraction of microfacets
with normal vectorh exactly betweenk1 andk2, and theshadow-
ing term: the fraction of those microfacets which are visible to both
eye and light (Figure 2). Microfacet theory’s only knowledge of the

(ab) scalar (dot) product of vectorsa andb
k1 normalized vector to light
k2 normalized vector to viewer
n surface normal to macroscopic surface
ρ(k1,k2) BRDF
h normalized half-vector betweenk1 andk2

p(h) probability density function of microfacet nor-
mals

F (cos θ) Fresnel reflectance for incident angleθ
P (k1,k2,h) Probability that light fromk1 reflecting in di-

rectionk2 is not shadowed
〈f〉 average of functionf over distributionp(h)

(see Equation 9)
Ω+(k) set of directionsh where(hk) > 0 (see Fig-

ure 4)
g(k) average of positive(hk) (see Equation 18)

Table 1: Important terms used in the paper

surface configuration isp(h), and this alone does not uniquely de-
termine the shadowing term. However, the shadowing term is still
heavily constrained by energy conservation.

The shadowing term is the most complex part of most
microfacet-based models, even if additionalp(h)-specific informa-
tion about the surface geometry is used. Because there are many
possible surface geometries that are consistent with a givenp(h),
it is the case that no specific shadowing function is “right”. We
believe that in most cases the shape ofp(h) function itself has a
much greater impact on the appearance than the shadowing. This
suggests the key idea in this paper: the shadowing term should be
made as simple as possible while remaining physically plausible.
Such a shadowing term is developed in Section 4. This key ex-
tension of the standard microfacet theories allows us to construct a
general procedure to create a BRDF for a statistical surface starting
from p(h).

Note that surface description in the language ofp(h) is less de-
tailed than that of using height correlation functions. Nevertheless,
we believe that the microfacet normal distribution is more intuitive
to deal with than the correlation functions. As we will emphasize in
Section 6, enough useful information aboutp(h) can be obtained
from general notion of surface structure obtained through visual
examination of the surface and the specular reflection highlight.
Moreover, attempting to obtain more detailed information about the
distribution might not be worth the effort. As in any other model,
we make simplification in our approach which affect the final re-
sult, but what we are trying to do is generate a physically plausible
BRDF having the general character of the surface reflection while
restricting the range of allowed surface microstructures as little as
possible. This is in contrast to most other physics-based approaches
which concentrate on a particular type of surface, usually Gaussian
height field, and emphasize the need for precise knowledge of sur-
face characteristics.

Some care should be exercised when specifyingp(h). In partic-
ular, because we do not make the common assumption of a surface
being a height field, in this general casep(h) should refer only to
the distribution of “visually important” or “surface” part of the mi-
crofacets. For example, a homogeneous porous substance thought
of as a collection of microfacets will have an overall “volume” dis-
tribution of microfacetspv(h) = const over the whole sphere of
directions. However, that most of these microfacets will be com-
pletely hidden and will not be of any significance for the scattering
process which occurs on the surface. In this case it is rather difficult
to separate surface from the rest of the substance and judge the exact
shape ofp(h). Fortunately, because we are not trying to reproduce
all the details of the reflection function, a reasonable guess forp(h)



is all we need and for this surface; it might bep(h) = const in
the upper hemisphere andp(h) = 0 in the lower one. Note, that
by making this particular choice forp(h) the surface is restricted to
be a height field. The initial choice can be refined later if necessary
but in this particular case it the surface will be mostly diffuse and
small refinements will not dramatically change the appearance.

We are concerned with single-bounce reflections from the micro-
facets and stay within the limits of geometric optics and Fresnel re-
flection. The result is a new form of the specular component of the
BRDF which constitutes the main contribution of the paper. The
complete BRDF can also have a diffuse term which accounts for
multiple bounces and subsurface scattering. This issue along with
other important properties of the BRDFs produced with the gener-
ator are briefly discussed in Section 5. Our framework is modular
and allows the user to choose the form of the final BRDF most ap-
propriate for the particular application.

3 Microfacet Theory

We now review the main results of microfacet theory as developed
by Torrance and Sparrow [23] and later introduced to computer
graphics by Cook and Torrance [4]. We follow their approach of
considering a collection of microfacets of small but finite size, and
we derive the basic formula for BRDF in terms of quantities conve-
nient for our model.

The quantity we wish to derive an expression for is the BRDF
ρ(k1,k2) which gives the ratio of radiance observed by a viewer in
the directionk2 to irradiance from infinitesimal solid angle about
k1. Throughout the paper, all vectors are shown inbold. They
are assumed to be normalized, and all quantities with subscript 1
refer to incident direction while those with subscript 2 belong to the
outgoing direction. Bothk1 andk2 and all normals point outward
from the surface. If we expose the surface to a uniform radiance of
L1 coming from a small solid angleδω1 aroundk1, the outgoing
radiance in directionk2 will be

L2 = ρ(k1,k2) L1 (k1n)δω1, (1)

wheren is the surface geometric normal and two vectors written
next to each other in parenthesis denotes their scalar product, i.e.,
the cosine of the angle between them. The use ofδ is not stan-
dard notation, but is used to make the algebra less cluttered without
losing the gist of the argument. By the definition of radiance, if
(k2n)A is the projected surface element area in the directionk2

andδE(k1 → k2) is the power reflected by the surface in the di-
rectionk2, then

L2 =
δE(k1 → k2)

A(k2n)δω2
, (2)

and BRDF can be written as

ρ(k1,k2) =
δE(k1 → k2)

AL1(k2n)(k1n)δω1δω2
. (3)

Only a fraction of all microfacets will participate in scattering the
energy fromk1 to k2. If the number of these active microfacets
is Nactive and all microfacets have the same areaAmf , their total
projected area in the direction ofk1 is NactiveAmf (kh) and the
total scattered power is

δE(k1 → k2) = L1δω1NactiveAmf (kh)F ((kh)), (4)

where h is the normalized half-vector betweenk1 and k2 and
F ((kh)) is Fresnel coefficient giving the fraction of incoming light
which is specularly reflected by a microfacet. Note that we will
drop subscripts in our notations if either of incoming and outgoing
direction can be used in an expression (e.g.,(kh)).

Out of the total ofN surface microfacets, onlyNp(h)δωh will
have their normals oriented in the appropriate direction. The den-
sity p(h) does not specify all surface properties uniquely, but in
our simplified approach this is the only characteristic of the surface
we will use in our analysis. Note that this function operates in the
domain of microfacet normals which is different from the space of
incoming and outgoing light directions. In particular, for the case
of specularly reflecting microfacets, the relationship between ele-
mentary solid angles [23] can be shown to be

δω2 = 4(k1h)δωh. (5)

Even if a microfacet has the required orientation, it might still not
contribute to the single-bounce highlight if it is shadowed by other
microfacets for either incoming or outgoing direction. Introducing
the probability for a microfacetnot to be shadowed in either incom-
ing or outgoing directions as0 ≤ P (k1,k2,h) ≤ 1 we will have
Nactive = Np(h)P (k1,k2,h)δωh and BRDF in the form

ρ(k1,k2) =
NAmfp(h)P (k1,k2,h)F ((kh))

4A(k1n)(k2n)
. (6)

Equation 6 is a somewhat modified version of the original result of
Torrance and Sparrow who present its more detailed derivation [23].

The areaA of the surface element can be written as a sum of the
projected areas of all microfacets:

A =
∑

facets

Amf (hn)P (n,h), (7)

where we introduce probabilityP (n,h) for a microfacet not to be
“shadowed” in the surface normal directionn by other microfacets.
If the surface is a height field,P (n,h) = 1 but in the general case
some microfacets may not contribute to the areaA of the projection.
This question is related to the general shadowing termP (k1,k2,h)
and we postpone its discussion until the next section. The “P ”
is used with a variable number of arguments that depend on what
assumptions are in play for that equation.

Given a large number of microfacets, Equation 7 can be rewritten
using the average over the ensemble of microfacets as

A = NAmf 〈(hn)P (n,h)〉ens, (8)

where〈...〉ens denotes the averaging procedure. One of the most
fundamental results in statistics states that as the size of the en-
semble increases, for a certain functionf of a random variable its
average over ensemble〈f〉ens converges with probability one to its
average〈f〉 over the distribution of the random variable. In our
case we can write for any quantityf(h):

〈f(h)〉ens = 〈f(h)〉 =

∫
Ω

f(h)p(h)dωh, (9)

where the integration is done over the unit sphereΩ of microfacet
normal directions (Gaussian sphere). So, for the BRDF we finally
have

ρ(k1,k2) =
p(h)P (k1,k2,h)F ((kh))

4(k1n)(k2n)〈(nh)P (n,h)〉 , (10)

and in the important special case of surface being a height field,

ρ(k1,k2) =
p(h)P (k1,k2,h)F ((kh))

4(k1n)(k2n)〈(nh)〉 . (11)

Although we have assumed that all microfacets have equal area
Amf the result does not change if there is an arbitrary distribution
of microfacet areas so long as this distribution is not correlated with
p(h), the distribution of normals.

Given a densityp(h), all terms in Equation 11 are straightfor-
ward to compute except for the shadowing termP (k1,k2,h). We
now turn to the discussion of this shadowing term which is neces-
sary to complete our formulation of the specular part of BRDF.



4 Shadowing Term

Most of the complexity of microfacet-based models arise from the
shadowing functionP (k1,k2,h). In this section we describe how
previous models deal with this term and introduce a new simplified
shadowing term.

4.1 Previous Shadowing Terms

On any rough surface it is likely that some microfacets will either
not receive light, or light reflected by them will be blocked by other
microfacets. The first situation is referred to by many authors as
shadowingand the second asmasking. However, these events are
symmetrical and for simplicity we will refer to both of them as
shadowing. A rigorous derivation of the probability that a point
on the surface is both visible and illuminated (also known as the
bistatic shadowing function) leads to very complicated expressions
and a set of approximations is made to make the problem tractable.
Several forms of the shadowing term have been derived in different
fields [1, 18, 21, 23, 25] and some of them (usually after further
simplification) were later introduced to computer graphics reflec-
tion models [4, 8, 22].

The most popular shadowing functions currently used are mod-
ifications of those of Smith [21], Sancer [18] and the original Tor-
rance and Sparrow shadowing term [23]. The first two formula-
tions are rather complex and are designed only for Gaussian height
fields. Smith, in addition, assumes an isotropic surface. The shad-
owing function by Torrance and Sparrow is simple, but assumes an
inconsistent model of an isotropic surface exclusively made by very
long V-cavities. None of the existing functions is flexible enough
to accommodate a sufficiently general distribution of microfacets.
Also, most of the formulations operate with height distributions,
not the more intuitive normal distributionp(h). In addition to space
limitations, this is the reason we do not present the expressions of
previously derived shadowing functions here.

The reason most authors deal with height distribution functions
is that shadowing is clearly a non-local event intimately related to
the height distribution of the surface and this information is neces-
sary for rigorous treatment of shadowing. In the next subsection we
will, however, make several assumptions which allows us to derive
a very general form of the shadowing termP (k1,k2,h) sufficient
for our purposes.

4.2 New Shadowing Term

As indicated by the preceding discussion, we cannot treat shadow-
ing rigorously if we assume a general form for the microfacet nor-
mal density function. Therefore, our generator is most appropriate
in cases where the effects of shadowing are secondary compared
with the influence of normal distribution shape. Even in these cases,
however, we cannot ignore the shadowing termP (k1,k2,h). As
can be seen from Equation 10, at the very least shadowing should
take care of the divergence at grazing angles where the denominator
terms disappear:(k1n)(k2n) → 0.

The shadowing term can be written as

P (k1,k2,h) = P (k1,h)P (k2,h |k1), (12)

whereP (k1,h) is the probability of not being shadowed in the di-
rectionk1 andP (k2,h |k1) is conditional probability of not being
shadowed in the directionk2 given that the facet is not shadowed in
directionk1. In general,P (k2,h |k1) 6= P (k2,h). For example,
it is easy to see that in the extreme case wherek1 = k2 we have
P (k2,h |k1) = 1. This shows that visibilities in the incoming
and outgoing directions are correlated. Most of shadowing func-
tions, however, are derived under the assumption of uncorrelated

visibilities. Van Ginneken et al. [24] considered how this correla-
tion affects Smith’s shadowing function, and found that its effect
can be accounted for by modifying the uncorrelated expression.

In most of this paper we will use the uncorrelated form of the
shadowing term written as a product of the two independent factors
for each of the two directions:

P (k1,k2,h) = P (k1,h)P (k2,h). (13)

This leads to some underestimation of the BRDF if directionsk1

andk2 are close to each other. If the viewing conditions are such
that this arrangement is of particular importance (in a night driving
simulator, for example) or if retroreflection is one of the pronounced
features of surface appearance (see Section 6.4) we propose using
a different form of the shadowing term:

P (k1,k2,h) = (1 − t(φ))P (k1,h)P (k2,h) +

t(φ)min(P (k1,h), P (k2,h)), (14)

where−π < φ < π is the angle between the projections of vectors
k1 andk2 onto the tangent plane andt(φ) is a correlation factor
with values between 0 and 1. The caset(φ) = 0 corresponds to
the completely uncorrelated case. This form of correlated shadow
term was chosen because it is simple and the resulting BRDF will
still conserve energy with arbitraryt(φ), as will be shown in Sec-
tion 5.3. We have not done extensive experimentation with the par-
ticular form oft(φ) but we do not believe it makes a large difference
as long ast(0) = 1 and t(φ) monotonically decreases to almost
zero as|φ| increases. The range of correlation effects was found
in [24] to be on the order of 15-25 degrees, so we use a Gaussian in
φ with the width of 15 degrees.

All we need now is an expression forP (k,h), the probability for
a microfacet to be visible in a given directionk. Note thatP (n,h)
in Equations 7, 8 and 10 of the previous section is just a special
case of this probability withk = n. The key assumption we make
is that probability for a microfacet to be visible in directionk does
not depend on the microfacet’s orientationh as long as it is not
turned away fromk (not self-shadowed), namely

P (k,h) =

{
P (k) if (kh) > 0
0 if (kh) ≤ 0

(15)

This assumption is equivalent to the absence of correlation between
the microfacet orientation and its position. This “distant shadower”
assumption has been invoked before to simplify complicated shad-
owing expressions obtained in other fields [1, 21, 25] but we will
use it in a different way - as a basis for deriving a simple and gen-
eral shadowing function. Intuitively, it corresponds to rather rough
surfaces and does not hold if the microfacets with certain orienta-
tion are more likely to be found at a certain height. For example, a
surface made of cylinders as shown in Figure 3a will not obey this
assumption while a very similar surface in Figure 3b might. In gen-
eral, the more correlated the surface microfacets are, the less likely
P (k,h) is to obey Equation 15.

The two surfaces in Figure 3 may still have the same distribu-
tion p(h) and there is no way for us to distinguish between the
two cases. Similarly, we will not be able to distinguish, for ex-
ample, between “positive” and “negative” cylinders of Poulin and
Fournier [16] but from their images it is clear that the differences
in appearance due to microfacet visibility issues and not to the dis-
tribution of microfacets are minor in this case. If finer details of
microfacet arrangement not captured byp(h) are expected to sub-
stantially affect the appearance, some different framework should
be used (see also Section 6.4).

The total projected area of a surface element onto directionk is
A(kn). It can also can be written in a way similar to Equation 7:

A(kn) =
∑

facets

Amf (hk)+P (k). (16)



Figure 3: Examples of surface microgeometry. Top: microfacets
with almost vertical orientation are more likely to be found near the
“bottom” of the surface and, therefore, are more likely to be shad-
owed. Bottom: orientation and height are largely uncorrelated.

Here the subscript ’+’ refers to the fact that the summation is per-
formed only over microfacets turned towardsk, namely the ones
with (hk) > 0. Introducing averaging over microfacets and, as
before, replacing it by averaging over distribution, we get

A(kn) = NAmfP (k)〈(hk)+〉. (17)

We are able to takeP (k) out of the averaging integral because of
our assumption that it does not depend onh. Because of the great
importance of quantity〈(hk)+〉 we introduce a new notation

g(k) = 〈(hk)+〉 =

∫
Ω+(k)

(hk)+p(h)dωh, (18)

where the integration is done inh-space over the hemisphere
Ω+(k) of directions(hk) > 0 (Figure 4). Note that if the surface
is a height field,P (n) = 1 and Equations 8 and 17 immediately
give a useful expression forP (k):

P (k) =
(kn)g(n)

g(k)
. (19)

In this special casep(h) = 0 in the lower hemisphere and the aver-
aging ing(n) is effectively done over the complete distribution.

To handle a more general case, we note that each microfacet
turned away from the directionk will have a shadow with area
Amf (hk). This area must be subtracted from the contribution of
microfacets turned towardsk. Again replacing sums by averages
over ensemble and then over distribution, we write the projected
area on the right-hand side of Equation 17 as

NAmfP (k)〈(hk)+〉 =

NAmf 〈(hk)+〉 + NAmf 〈(hk)−〉, (20)

or

P (k) = 1 +
〈(hk)−〉

g(k)
. (21)

The second term is negative and the integration in it is done over the
partΩ−(k) of distribution complimentary toΩ+(k) (Figure 4). It
is clear from this equation thatP (k) ≤ 1 as it should be. For a dis-
tribution of microfacet normalsp(h) to represent a valid surface, at
the very least the average normal vector over the entire distribution
must lie in the direction of the geometric normaln of the surface:

∫
Ω+(k)

hp(h)dωh +

∫
Ω−(k)

hp(h)dωh =

∫
Ω

hp(h)dωh = n(〈h〉n) (22)

n
k

Ω+( k)

Figure 4: Integration domain forg(k)

Multiplying both sides of this equation by scalark we have

〈(hk)+〉 + 〈(hk)−〉 = (kn)〈(hn)〉, (23)

or

〈(hk)−〉 = (kn)〈(hn)〉 − g(k). (24)

Substituting this into Equation 21 we obtain an expression for
P (k):

P (k) =
(kn)〈(hn)〉

g(k)
. (25)

Averaging in the numerator is done over the complete sphereΩ of
directions. Note that Equation 19 is now just a special case of Equa-
tion 25 and that Equations 21 and 25 show that for any physically
valid distributionp(h) our probability of being visible will indeed
lie between 0 and 1.

The combination of Equations 10, 13 (or 14) and 25 completely
describes the specular part of BRDF. Using the uncorrelated form
of shadowing term of Equation 13, we get

ρ(k1,k2) =
p(h)〈(hn)〉F ((kh))

4g(k1)g(k2)
. (26)

Note the interesting fact that p.d.f.p(h) does not even have to be
normalized to be used in this equation. The above formula is well-
suited to evaluation. Givenp(h), it is straightforward to evaluate
the BRDF. Equation 26 is the main contribution of this paper. For
the rest of the paper we will discuss implications and applications
of this formula.

5 Extensions and Discussion

In this section we discuss several issues related to the specular-only
single bounce BRDF model derived in the last section. In particu-
lar, we discuss an energy-conserving diffuse term, implementation
issues, extension to non-Fresnel microfacets, and prove energy con-
servation.

5.1 Diffuse Term

Equation 26 describes the part of scattering process due to single-
bounce reflections from microfacets. In addition to this specular
part there will be other scattering events, such as multiple bounces
and subsurface scattering. A complete description of these pro-
cesses is rarely attempted in a general-purpose BRDF model and



their combined contribution is usually represented by adding a dif-
fuse component to the specular BRDF. The most common form of
the diffuse term is Lambertian:

ρ(k1,k2) =
kdρd

π
+ ksρs(k1,k2), (27)

where0 ≤ ρd ≤ 1 is diffuse albedo of the surface whilekd andks

are user-specified constants controlling the relative importance of
specular and diffuse reflections. This is a perfectly valid option in
our case as well. We can simply use Equation 26 forρs and ensure
thatkd + ks ≤ 1 to preserve the energy conservation achieved for
the specular part (Section 5.3).

However, this simple form of diffuse term has problems. First of
all, it is not obvious how to choose weightskd andks. Second, it
is clear that as more light is being reflected specularly, less of it is
available for diffuse scattering, so the relative weightskd andks of
diffuse and specular reflections should not be constants. If Fresnel
effects can causeks to approach one for grazing angles,kd must be
set to zero for all angles (since it is a constant). To take this effect
into account in a way preserving reciprocity, we use a method of
Shirley et al. [20] and write forkd

kd(k1,k2) = c(1 − R(k1))(1 − R(k2)), (28)

where

R(k) =

∫
ρs(k,k′)(k′n)dωk′ (29)

is the directional hemispherical reflectance of the specular term,
wherek′ is the mirrored direction ofk. We also completely dis-
pose ofks by allowing the specular reflection to “have its way” and
adjust the diffuse term so that it consistently follows the specular
reflection. The normalization constantc is computed such that for
ρd = 1 the total incident and reflected energies are the same. A
complete BRDF will have the form

ρ(k1,k2) = c(1 − R(k1))(1 − R(k2))ρd + ρs(k1,k2). (30)

This form of diffuse term implicitly assumes that there is no absorp-
tion on the surface and all the energy which is not reflected specu-
larly is available for diffuse scattering. The situation is different in
case of metals. First, iff0 is the normal reflectance of the metal,
only approximatelyf0 fraction of incoming light is not absorbed by
a flat metal surface. Second, diffuse scattering here is exclusively
due to multiple bounces and thus the diffusely scattered light has a
more saturated color of the metal than the primary reflection does.
We attempt to take both of these effects into account by replacing
ones in Equation 30 byf0 and assigningρd for a metal (which oth-
erwise does not have any physical sense) to bef0. Because the true
fraction of non-absorbed light is greater thanf0, factor(f0−R(k))
can become negative for some surfaces due to our approximation.
We simply set the diffuse term to zero in such cases.

5.2 Implementation Issues

Implementation of our model in a rendering system is straightfor-
ward. For the Fresnel coefficient we use Schlick’s approximate for-
mula [19]

F ((kn)) = f0 + (1 − f0)(1 − (kn))5 (31)

where againf0 is the Fresnel factor at normal incidence. Note that
we could also use the full Fresnel equations, but we use Schlick’s
formula only for convenience. This should not lead to significant
accuracy problems as for the error introduced by Schlick’s formula
is smaller than one percent compared with the full Fresnel expres-
sion [19]. To generate a BRDF for a new distributionp(h) all we

need, in addition to the implementation ofp(h) itself, are values
for g(k) andR(k). Unfortunately, because of the non-standard in-
tegration domain ofg(k), analytical expressions for this function
can be obtained only for the most trivialp(h)’s and we need to
resort to numerical integration.

However, the integrals are well-behaved and the results are
smooth functions for non-singularp(h). This allows us to compute
values of bothg(k) andR(k) on a very coarse grid using available
numerical packages, store the results in a table and use bilinear in-
terpolation during the rendering process. We have used a total of
200 grid points (for many distributions an even coarser grid should
be sufficient). Integration was done using both Matlab and a simple
home-built Monte Carlo routine. Two sets of computedR(k) (one
with f0 = 1 and one withf0 = 0) are sufficient to computeR(k)
for a material with arbitraryf0 for a given microfacet distribution.

In the BRDF generation phase we start fromp(h) and output a
compact numerical representation of three two-dimensional func-
tions: g(k), R(k) with f0 = 0 andR(k) with f0 = 1. The last
two functions are only used for the diffuse term and are not required
for its simpler form in Equation 27. During rendering we use these
data to compute the full four dimensional BRDF for arbitraryk1

andk2. At this stage we also use data for normal reflectancef0

and diffuse albedoρd. Wavelength dependence of these quantities
controls the color of the surface. We have not done a careful perfor-
mance analysis but from our experience for a non-trivialp(h) most
of the BRDF computation time is due to evaluating this normal dis-
tribution function.

Note that most distributions have some symmetry which can be
exploited to further reduce the amount of data and/or generation
time. Data for an anisotropic Gaussian distribution of normals, for
example, need be computed only over a quarter of the hemisphere
and for any isotropic distribution functionsg(k) andR(k) become
one dimensional.

Finally, if a particular type of parameterized distribution (Gaus-
sian, for example) is used often it should be possible to approximate
g(k) with a simple function ofk and distribution parameters as is
commonly done to increase the efficiency of reflection models. The
same is true forR(k) but these functions usually have more com-
plex shapes.

5.3 Energy Conservation

By inspection of the formulas, it is clear that generated BRDFs are
reciprocal. We now prove now that they also conserve energy for
any physically plausiblep(h). To do this, we assume the worst-
case scenario ofF ((kh)) = 1 and shadowing term in Equation 14
with t(φ) = 1 (becauseP (k) ≤ 1 this corresponds to the largest
possible shadowing term for our model). The BRDF in this case
will be

ρ(k1,k2) =
p(h)min(P (k1), P (k2))

4〈(hn)〉(k1n)(k2n)
≤

p(h)P (k1)

4〈(hn)〉(k1n)(k2n)

Hemispherical reflectance for a given incoming direction is

R(k1) =

∫
ρs(k1,k2)(k2n)dω2 ≤

P (k1)

4〈(hn)〉(k1n)

∫
p(h)dω2 =

P (k1)

4〈(hn)〉(k1n)

∫
p(h)4(k1h)dωh

The last transition is done using Equation 5. The integration is done
over a complex region ofh-space which is in any case contained



in the hemisphereΩ+(k1). Extending the integral over the whole
Ω+(k1) and using definitions 18 ofg(k) and 25 ofP (k) we com-
plete the proof:

R(k1) ≤ P (k1)

〈(hn)〉(k1n)

∫
Ω+(k1)

(k1h)p(h)dωh =

P (k1)g(k1)

〈(hn)〉(k1n)
= 1 (32)

The only fact we used in our proof is thatP (k) ≤ 1 for anyk. In
Section 4, in turn, this was shown to be the case for anyp(h) whose
average normal vector〈h〉 is parallel to the geometric normal of the
surface. This is the only restriction on microfacet distributionp(h).
If it is satisfied, the generated BRDF will conserve energy.

5.4 Non-Fresnel Microfacets

Our model is not restricted to perfectly specular microfacets. In
general, microfacets with many orientations will contribute to sur-
face BRDF for given incoming and outgoing directions and integra-
tion of their contribution is necessary.

Let all microfacets have elementary BRDFβ. Then we can re-
peat with some modifications the derivation from Sections 3 and 4
to arrive at the result

ρ(k1,k2) =
P (k1,k2)

(k1n)(k2n)〈(nh)〉∫
β(k1,k2)(k1h)+(k2h)+p(h)dωh (33)

The integration is done over the sector where both(k1h) and(k2h)
are positive and any of shadowing termsP (k1,k2) from Section 4
can be used. Note thatβ(k1,k2) is usually specified with respect to
microfacet’s local coordinate system and a coordinate transforma-
tion is necessary to obtain its value for the integral in Equation 33.

Although this extension considerably broadens the range of sur-
faces our model is applicable to, we also lose one of the main ad-
vantages of our approach: compactness. Before, we could represent
a general four dimensional BRDF using only two dimensional func-
tions. The integral in Equation 33, however, is a four dimensional
function by itself and does not, in general, allow lower dimensional
representation. For some special cases, such as Lambertian elemen-
tary BRDF coupled with isotropicp(h) the integral becomes three
dimensional and, therefore, feasible to compute, store and use in a
way similar to that described in Section 5.2. For an isotropic Gaus-
sian distribution of Lambertian microfacets the general behavior of
the generated BRDF is similar to that of Oren-Nayar’s model [14],
namely, retroreflection is increased compared to a Lambertian sur-
face (Figure 8).

6 Applications

In this section we apply our model to a variety of surface types. Al-
though we have implemented our model in a Monte Carlo ray tracer
capable of handling complex geometries and illumination effects,
our images in this section intentionally show very simple objects
and lighting conditions. In particular, illumination is coming from
a single small light source far from the scene and indirect lighting is
not included. This is done to emphasize effects due to BRDF of the
material and to make the comparison with previous results easier.

Reflectance data of gold are used asf0 (see Section 5.2) for all
metal objects while for non-metalsf0 is set to5% across the visible
spectrum.

Figure 5: Anisotropic Gaussian golden spheres withσx = 0.1,
σy = 1.0. Left: Ward. Right: new model.
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Figure 6: Directional hemispherical reflectance as a function of
incoming angle for perfectly reflecting microfacets with Gaussian
distribution σx = 0.1, σy = 0.2. For an ideal flat surfaceR
should be 1.0 everywhere. Left: Ward. Right: new model.

Figure 7: Anisotropic Gaussian golden painted plastic spheres
with σx = 0.1, σy = 0.2. Left: Ward. Right: new model.

Figure 8: Gaussian spheres with Lambertian microfacets. Right:
new model withσx = σy = 1.0. Left: Oren-Nayar with compatible
parameters.



6.1 Gaussian Surfaces

By far the most popular distribution used in BRDF research liter-
ature is Gaussian. This is due to both its practical importance and
nice mathematical properties. Gaussians are used in all four ma-
jor categories of BRDF models outlined in the introduction. While
some of this work is closer to our approach in its theoretical foun-
dations, we feel that from the practical point of view our model
is closest to that of Ward [26]. Ward’s BRDF is simple, handles
anisotropic distributions and seeks to reproduce the main character
of the material’s reflectance behavior without attempting an overly
detailed description. Other previous models do not simultaneously
possess all these properties.

To create an anisotropic Gaussian BRDF, we use the distribution

p(h) = c ∗ exp(− tan2 θ(cos2 φ/σ2
x + sin2 φ/σ2

y)) (34)

whereθ is the angle between the half vectorh and the surface nor-
mal,φ is the azimuth angle ofh andc is a normalization constant.

Two side-by-side comparisons of our model with Ward’s are
shown in Figures 5 and 7. Note that the shape of highlight is
nearly identical while there are some differences in the diffuse part
of images which is due to Ward effectively using a simpler form
(Equation 27) of the diffuse component. In particular, for our metal
sphere on Figure 5 the diffuse component appears automatically
when there is enough energy left after single-bounce scattering. To
achieve the same effect in Ward’s model (and any other using the
popular Lambertian diffuse term) it would be necessary to manually
adjust the diffuse reflectance parameter.

This figure also shows that the highlight is brighter for our
BRDF. The general reason for this is clear from Figure 6 where
the hemispherical reflectanceR is plotted versus the incoming light
direction. To make the plots directly comparable, we show data for
most reflecting specular BRDF in both cases (f0 = 1 for our model
andρs = 1 in Equation 5 of Ward’s paper [26]) and do not include
the diffuse term. For the values of parameters shown, the surface is
quite close to being flat, so one would expect thatR should be close
to that of flat surface, 1.0 in this case. One can see from the plots
that our model behaves as expected while Ward’s does not. Note
also that the true value forR at the grazing angle((kn) = 0) is
infinite for Ward’s model [13] and we simply extrapolate previous
behavior to get the data point at the grazing angle.

While our approach does require an extra generation step, com-
putation time during the rendering process of our BRDF is close to
that of Ward’s and our model is a viable alternative where energy
conservation is of great importance for a particular application.

Figure 8 compares a BRDF generated for an isotropic Gaussian
distribution of Lambertian microfacets with an extension of our
process (Section 5.4) and Oren-Nayar model with compatible pa-
rameters. Both BRDFs have the tendency to make objects appear
“flatter” than the Lambertian BRDF due to increased retroreflec-
tion.

6.2 Grooved Surface

A surface consisting of ideal V-grooves all running in a given di-
rection will have itsp(h) proportional to the sum of two delta func-
tions, each accounting for microfacets forming one side of a groove.
Replacing these delta functions with narrow Gaussians (σ = 0.1)
to account for imperfections and going through our generation pro-
cess, we create a BRDF which correctly shows the main feature of
a grooved surface’s reflectance, double reflections. Figure 9 shows
a piece of grooved metal illuminated by asinglelight source. The
orientation of the grooves on the left is perpendicular to the viewing
direction while on the right they are parallel.

Figure 9: Double highlights from a single light source for the
same metallic grooved surface at two orientations of the grooves.
Grooves are symmetrical with the angle of 40 degrees

6.3 Satin

The microstructure of woven cloth is usually thought of as a sym-
metric pattern of interwoven cylindrical fibers running in perpen-
dicular directions. While it would be possible to generate a BRDF
corresponding to this structure with our approach, the surface of
particular fabric we studied had a different microstructure shown
in Figure 10. It is created almost exclusively by fibers running in
one direction with about70% of the fiber length lying in the rel-
atively flat part of the fiber while the other30% corresponding
to the bent parts at the ends. We model the distribution of mi-
crofacets as a linear combination of two terms corresponding to
these flat and bent parts of the cylindrical fiber:p(h) = 0.7 ∗
pflats(h) + 0.3 ∗ pends(h). The coefficients reflect mutual area
contributions of the two parts to the complete distribution. Both
pflats(h) andpends(h) were chosen to be “cylindrical” Gaussian
heightfields (σy = ∞, p(h) = 0 for (hn) < 0) with different
widths. Valuesσx = 0.1 for pflats(h) andσx = 0.3 for pends(h)
were used. Strictly speaking, the shape of realpends(h) would
probably be more accurately modeled by a distribution with flatter
top and faster drop-offs than that of a Gaussian. This was attempted
but the results were almost identical visually, so a simpler Gaussian
distribution was used for the final image. This is consistent with our
belief that the very precise characterization of the microfacet distri-
bution is not needed for visual applications. Note that becauseg(k)
is linear inp(h), no new integration is necessary to computeg(k)
if g’s corresponding topflats(h) andpends(h) are already com-
puted. This suggests an efficient way of creating new distributions
as a linear combination of ones for whichg(k) has been previously
computed. For example, small contribution due to perpendicular
fibers can be added in this manner if necessary.

Because the appearance of real cloth is dramatically affected by
the presence of characteristic wrinkles, we used a dynamic simu-
lation method [17] to create cloth geometry. The left side of Fig-
ure 11 shows a satin tablecloth rendered with generated BRDF. It
is interesting to contrast this image with the image on the right us-
ing the same geometric model with the BRDF described in the next
section.

6.4 Velvet

Velvet is another example of a material with interesting reflectance
properties not easily conveyed by conventional BRDFs. In their vir-
tual gonioreflectometer, Westin et al. [27], model velvet microstruc-
ture as a forest of narrow cylinders (fibers) with the orientation of
each cylinder perturbed randomly. While it is difficult to write an
exactp(h) corresponding to such “surface” for the reasons outlined
in Section 2, a simple intuitive form of this function written as an
“inverse Gaussian” heightfield is enough to capture the main char-



Figure 10: Microgeometry of our sample of satin.

Figure 11:Synthetic satin (left) and velvet (right) tablecloths. The
geometries are identical.

n

<h>

Figure 12: Microgeometry of velvet (left) and p(h) used to model
it (right).

Figure 13:A tablecloth made of two different colors of slanted fiber
velvets.

acter of the distribution:

p(h) = c ∗ exp(− cot2 θ/σ2), (35)

with σ = 0.5 for the image on the right of Figure 11 which shows
a material with distinct velvet-like reflectance properties. Because
retroreflection is one of the most pronounced reflection properties
of velvet [11], we used the correlated form of shadowing term
(Equation 14) to generate both this and slanted fiber (see below)
velvet BRDFs. Contrary to Westin et al. we ignore the tips of
the fibers due to their very small area. If there were any specular
highlights due to the tips, their contribution can be easily added by
forming a linear combination of an inverse Gaussian with a regular
Gaussian distribution.

Although this approach produced good results, a symmetric for-
est of fibers was not what we saw when we examined a piece of
real velvet. More realistic structure is shown on the left of Fig-
ure 12. The fabric consists of rows of tightly woven bundles of
filament. Each bundle is slanted with the angle of about 40 degrees
with respect to the geometric normal of the cloth surface. We can
call this arrangement milliscale geometry in contrast with micro-
geometry formed by the thin fibers themselves. Similar geometry
was credited as the major reason for velvet anisotropic reflection
behavior by Lu et al. [11]. Strictly speaking, our model does not
take into account visibility issues due to this higher-order arrange-
ment of microfacets. The most consistent approach therefore would
be to model this structure explicitly, for example as a collection of
slanted cylinders applying two different BRDFs (both of which can
be generated by our process) to the tops and to the sides of these
cylinders. An easier alternative would be an attempt to create a
simple distribution of microfacetsp(h) which, although potentially
non-physical, can account for the milliscale visibility and produce
a BRDF with necessary reflection properties.

Looking carefully at the velvet highlight structure we saw that
it is the sides of the bundles and not the tops which contribute the
most to the reflection. This suggests that we can try to reproduce
most of the behavior with a specular BRDF based exclusively on
thep(h) accounting for the microfacets on the sides of the bundles.
A “slanted” version of cylindrical Gaussian distribution (σy = ∞,
σx = 0.5) schematically shown on the right of Figure 12 was used.
The only place where we used the part of distribution due to the
tops of the bundles is the computation of〈(hn)〉 when we double
this value due to the tops contribution. Note two facts about this
distribution: it is not a height field and its average vector〈h〉 does
not point in the direction of geometric normal. While the first fea-
ture does not present any problem in our approach, the second one
shows that this distribution is not physically realizable and, as a re-
sult, the energy conservation of the generated BRDF is not guaran-
teed. Computations ofR(k) show that this quantity indeed exceeds
one for 14 out of our 200 directional data points in the hypothetical
case of perfectly reflecting (f0 = 1.0) fiber material but was never
a problem for ourf0 = 0.05 synthetic fibers.

Figure 13 shows the results of this process. The illumination and
viewing directions are almost parallel but due to the slant of the
fibers the left side of the tablecloth is substantially brighter than the
right one. This is in good agreement with the behavior of real velvet
we observed. The right image of Figure 13 shows some limitations
of our approach. Because we do not handle the details of multiple-
bounce scattering and simply introduce a diffuse term to account
for them, the right side of the red tablecloth does not look as it does
for the real velvet. In the real material, light experiences multiple
bounces among the red fibers for this viewing geometry acquiring a
deep dark (almost black) color in the process. This is not captured
by our simple diffuse term.



6.5 Unusual Distributions

We can take to extreme the use of the desired reflection properties
as the only guidance in creating the distributionp(h) regardless of
whether a material described by this function exists or is even physi-
cally possible. For example, we can modulate a Gaussianp(h) with
an arbitrary function or even an image to create the unusual high-
lights shown in Figure 1. As long as the modulation is symmetric
enough to keep the average vector〈h〉 in the normal direction (such
as the distribution used for the image on the left of Figure 1), the
BRDF will be energy conserving. A more general modulation may
result in〈h〉 no longer parallel ton but in practice we notice that
as long as this effect is not very strong, the energy conservation
is not affected. For example, image on the right of Figure 1 was
created with an energy conserving BRDF. While such unusual dis-
tributions are not of great value in realistic image synthesis, they
clearly demonstrate the generality of our approach and can poten-
tially find applications in the special effects industry.

7 Conclusion

The new BRDF model presented in this paper is well-suited to sur-
faces whose primary characteristic is the shape of the specular high-
light. We have found it reasonably straightforward to design new
BRDFs for surfaces because the diffuse term and energy conser-
vation are handled in a natural manner that does not require sub-
stantial user intervention, and the parameters used in the model are
intuitive. However, for surfaces whose appearance is not dominated
by the specular highlight, our model is not well-suited.

We have found that using our model does not require much hand-
tuning of parameters; the images in the last section were generated
with very few iterations on parameter values. We speculate that
a model for subsurface effects in a similar spirit to our model is
possible. The user would specify some simple parameters analo-
gous top(h) and a BRDF would be generated. We also believe that
there should ultimately be separate terms for the components of
the BRDF accounted for by primary specular reflection, multiple-
bound specular reflection, and subsurface scattering.
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Abstract.
We present a new BRDF model that attempts to combine the advantages of
the various empirical models currently in use. In particular, it has intuitive pa-
rameters, is anisotropic, energy-conserving, reciprocal, has an appropriate non-
Lambertian diffuse term, and is easy to use in a Monte Carlo framework.

1 Introduction

Physically-based rendering systems describe reflection behavior using the bidirectional
reflectance distribution function (BRDF) [3]. At a given point on a surface the BRDF
is a function of two directions, one toward the light and one toward the viewer. The
characteristics of the BRDF will determine what “type” of material the viewer thinks
the displayed object is composed of, so the choice of BRDF model and its parameters
is important.

We would like to have a BRDF model that works for “common” surfaces such as
metal and plastic, and has the following characteristics:

1. Plausible: as defined by Lewis [5], this refers to the BRDF obeying energy con-
servation and reciprocity.

2. Anisotropy: the material should model simple anisotropy such as seen on brushed
metals.

3. Intuitive parameters: for material such as plastics there should be parameters
such as Rd for the substrate and Rs for the normal specular reflectance as well as
two roughness parameters nu and nv .

4. Fresnel behavior: specularity should increase as the incident angle goes down.
5. Non-Lambertian diffuse term: The material should allow for a diffuse term,

but the component should be non-Lambertian to assure energy conservation in
the presence of Fresnel behavior.

6. Monte Carlo friendliness: there should be some reasonable probability den-
sity function that allows straightforward Monte Carlo sample generation for the
BRDF.

Neumann et al’s metallic model [6] captures items 1, 3, 4, and 6. Schlick’s model [8]
captures items. Ward’s model [10] captures items 2, and 3. It only violates 1 for energy
conservation at grazing angles. It also approximates Monte Carlo friendliness by giving
a sample generation method but does not specify what the underlying density function
is.

Our goal is to find a BRDF with all the properties outlined. Our basic strategy is
to make a Fresnel-weighted Phong-style cosine lobe model that is anisotropic. This
strategy borrows pieces from Ward’s model [10] and from Neumann and Neumann’s
model [6]. In addition, we add some correction terms that are crucial to keep the di-
rectional hemispherical reflection near the desired level. For the diffuse term we use
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Fig. 1. Geometry of reflection. Note that k1, k2, and h share a plane, which usually does not
include n.

(ab) scalar (dot) product of vectors a and b
k1 normaized vector to light
k2 normaized vector to viewer
n surface normal to macroscopic surface
ρ(k1, k2) BRDF
h normalized half-vector between k1 and k2

ph(h) probability density function for half-vector
p(v) probability density function for reflection sampling rays
F (cos θ) Fresnel reflectance for incident angle θ

Table 1. Important terms used in the paper

the basic method of Shirley et al. [9] to allow the diffuse-specular tradeoff to conserve
energy.

We decompose the BRDF into a specular component and a diffuse component. Ac-
cordingly, we write our BRDF as the classical sum of two parts:

ρ(k1, k2) = ρs(k1, k2) + ρd(k1, k2), (1)

where the first term accounts for the specular reflection and will be presented in the next
section. While it is possible to use the Lambertian BRDF as diffuse term ρd(k1, k2) in
our model, we will discuss a better solution in section 3. We discuss how to implement
the model in Section 4. Readers who just want to implement the model should skip to
that section.

2 Anisotropic specular BRDF

Several shapes for the specular lobe have been proposed in the literature with Phong
power-of-cosine lobe being by far the most popular. This is primarily due to its sim-
plicity. The original form of the Phong shader [7] has several problems which triggered
at creating a more physically plausible Phong-style BRDF [4, 5, 6]. We will also use a
Phong-style specular lobe in our model but will make this lobe anisotropic and incor-
porate Fresnel behavior while attempting to preserve the simplicity of the initial model
and physical plausibility achieved earlier for the Phong BRDF by other researchers.
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As our starting point we will choose recent result of Neumann and Neumann [6]
who improved energy conservation properties of Phong model and made the BRDF
well-suited for importance sampling in a Monte-Carlo framework. Their main result in
our notation is:

ρ(k1, k2) = c ∗ (r1k2)n

max((nk1), (nk2))
F (cos θ), (2)

where n is Phong exponent, r1 is the unit vector in the direction of mirror reflection
of vector k1 around the surface normal, c is a normalization constant and F (cos θ) is
the Fresnel fraction. Several choices of argument θ are discussed by the authors. The
division by max((nk1), (nk2)) “pumps up” the total hemispherical reflectance R(k) of
the surface and in the limit n → ∞ (Phong representation of a perfect mirror) gives
R(k) = 1 for any k not exactly at grazing incidence. While there are several ways to
achieve this behavior, this particular form preserves reciprocity and avoids the diver-
gence near the grazing angle frequently observed for other simple models.

To extend this model to anisotropic surfaces we use an approach similar to Ward’s [10]
who made the parameters of his gaussian lobe model depend on the azimuthal angle of
the unit half vector with respect to a system of coordinates attached to the surface. In-
stead of single Phong parameter n in Equation 2 we introduce two parameters nu and
nv and write the exponent as nu cos2 φ + nv sin2 φ where φ is the azimuthal angle of
half-vector h. To get a better intuition about the model and, more importantly, to allow
more efficient importance sampling of the specular lobe in a way discussed below, we
also replace the Phong cosine (rk1k2) by (nh), a transformation originally proposed by
Blinn [1]. Our BRDF is now

ρ(k1, k2) = c ∗ (nh)nu cos2 φ+nv sin2 φ

max((nk1), (nk2))
F (cos θ). (3)

Although our model is mostly empirical, to proceed further it is useful to interpret
certain parts of Equation 3 in terms of physics-based microfacet models [2]. These
models treat a surface as a collection of small mirror-like facets. Reflection from these
facets is is governed by Fresnel laws. At a high level, a BRDF obtained with such
models have the form

ρ(k1, k2) = c ∗ ph(h)V is(k1, k2, h)F ((kh)), (4)

where ph(h) is the microfacet probability density function, F is the Fresnel fraction
and V is is the microfacet visibility function which gives the probability for a given
microfacet to be visible from both directions k1 and k2 and accounts for most of the
complexity of a given microfacet model. Visibility function is also responsible for
ensuring the energy conservation. We will not attempt to find a direct analog of this
complicated V is function in our empirical model and will be simply concerned with
providing the means to conserve energy. However, other terms of equation 4 do have
direct counterparts in equation 3. For example, it is immediately clear that the appro-
priate choice for the argument of the Fresnel fraction F is (kh). Note that throughout
the paper we will drop the subscript of vector k if either k1 or k2 can be used. We will
also introduce notation

ph(h) =

√
(nu + 1)(nv + 1)

2π
(nh)nu cos2 φ+nv sin2 φ (5)
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where the normalization constant is chosen so that p(h) is a true probability density
function (integrates to one over the hemisphere of possible h directions). Energy con-
servation requirement can be written as

R(k1) =
∫

k2

ρ(k1, k2)(k2n)dωk2 ≤ 1 (6)

for any k1. Division by max((nk1), (nk2)) in our model will be cancelled (or replaced
by a number less than 1) by (k2n) factor and we obtain the condition

c′ ∗
∫

k2

ph(h)F ((kh))dωk2 ≤ 1 (7)

The assumption of mirror reflection from microfacets gives an important relationship
between differential solid andles in the space of reflected rays and the h-space of mi-
crofacet normal directions [?]:

dωk2 = 4(k1h)dωh. (8)

Using this formula and the fact that F ≤ 1 we obtain

c′ ∗
∫

h
ph(h)4(k1h)dωh ≤ 1 (9)

The integration is now done over a complex subregion of h-space. However, being
conservative, we can extend the integral over the whole hemisphere of directions. This
formula shows that if we divide our BRDF by 4(kh) and set c′ = 1 we will guarantee
that our model will conserve energy since ph(h) integrates to one over the hemisphere.
Putting all this together, we arrive at the final form of our anisotropic specular BRDF:

ρ(k1, k2) =

√
(nu + 1)(nv + 1)

8π

(nh)nu cos2 φ+nv sin2 φ

(hk)max((nk1), (nk2))
F ((kh)) (10)

In our implementation we use Schlick’s approximation to Fresnel fraction [8]:

F ((kh)) = Rs + (1 − Rs)(1 − (kh))5, (11)

where Rs is material’s reflectance for the normal incidence.
As a visualization of the energy normalization of the model, we rendered a variety

of spheres with different parameters shown in Figure 2. The spheres are in a “furnace”
with radiance one in all directions. Perfectly reflecting spheres, regardless of BRDF,
would also be white. Essentially it is a visualization of the directional hemispherical
reflectance (directional albedo) for a variety of input angles.

The specular BRDF 10 described in this section is useful for representing metallic
surfaces where the diffuse component of reflection is very small. Figure 3 shows a set of
golden spheres on a texture-mapped Lambertian plane. As the values of parameters nu

and nv change, the appearence of the spheres shift from rough metal to almost perfect
mirror, and from highly anisotropic to the more familiar phong-like behavior.
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nv = 10000

nv = 1000

nv = 100

nv = 10

nu = 10 nu = 100 nu = 1000 nu = 10000

Fig. 2. Spheres in a furnace. As the exponents get larger, less energy is “lost”. For the center of
the darkest sphere, nu = nv = 10, the luminance is about 68% of the background luminance.

5



nv = 10000

nv = 1000

nv = 100

nv = 10

nu = 10 nu = 100 nu = 1000 nu = 10000

Fig. 3. Metallic spheres for various exponents.
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3 Diffuse term

It is certainly possible to use a Lambertian BRDF together with our specular term in
a way this is usually done for most models [8, 10]. However, in this section we will
derive a simple angle-dependent form of the diffuse component which takes into ac-
count the fact that the amount of energy available for diffuse scattering varies due to
the dependence of specular term’s total reflectance on the incident angle. In particular,
diffuse color of a surface disappears near the grazing angle because the total specular
reflectance is close to one in this case. This well-known effect can not be reproduced
with a Lambertian diffuse term and is therefore missed by most reflection models. An-
other, perhaps more important, limitation of the Lambertian diffuse term is that it must
be set to zero to ensure energy conservation in the presence of a Fresnal-weighted term.

Shirley et al. [9] proposed a simple form of a non-Lambertian diffuse BRDF which
takes this issue into account while preserving overall energy conservation and reci-
procity. We use this result in the following form:

ρd(k1, k2) = c ∗ Rd(1 − R(k1))(1 − R(k2)), (12)

where R(k) is the total hemispherical reflectance of the specular term as defined by
equation 6, 0 < Rd < 1 is the diffuse albedo of the surface and c is a normalization
constant computed such that for Rd = 1 the total incident and reflected energies are the
same.

For this form to be directly used in our model, we need a closed-form expression
for R(k). Unfortunately, specular BRDF 10 does not allow for analytical integration
of Equation 6. It is possible, however, to find an approximation to R(k) which will be
sufficient for our purposes. To ensure overall energy conservation we will be looking
for a simple function r(k) which is bounded by R(k) from below, i.e. R(k) ≤ r(k)
for any k. First of all, we will ignore the loss of energy by the specular component
due to the specular lobe going below horizon. This effect is hard to account for for an
arbitrary n and it becomes negligible for large n, so we will approximate R(k) as 1 in
the absence of Fresnel effects (Rs = 1 in equation 11). This allows us to write

R(k1) =
∫

k2

f(k1, k2)(k2n)F ((kh))dωk2 ≤ Rs + (1 − Rs)
∫

k2

f(k1, k2)(k2n)(1 − (kh))5dωk2 ,

(13)

where f(k1, k2) is the part of the specular BRDF without the Fresnel fraction and our
approximation says that

∫
k2

f(k1, k2)(k2n)dωk2 = 1. For a given incident vector k1

scalar product (kh) is minimal if h lies in the plane of incidence and bisects the angle
between k1 and a vector in uv coordinate plane farthest from k1. In this case (kh)min =√

1−
√

1−(k1n)2

2 and we can choose r(k) = Rs + (1 − Rs)(1 − (kh)min)5. We will
further simplify this expression by replacing (kh)min with approximation (kh)min ≥
(kn)/2. Our approximate hemispherical reflectance becomes r(k) = Rs+(1−Rs)(1−
(kn)/2)5. We can now substitute this as R(k) into equation 12 and perform integration
to obtain the normalization constant c. The diffuse term becomes

ρd(k1, k2) =
28Rd

23π
(1 − Rs)

(
1 −

(
1 − (nk1)

2

)5
)(

1 −
(

1 − (nk2)
2

)5
)

(14)

Note that our diffuse BRDF does not depend on nu and nv , so we can judge the quality
of approximations we made in its derivation by looking at a single image on figure 2

7



Fig. 4. Half of a diffusely illuminated sphere with Rs = 0.05 and Rd = 1.

created in a setting identical to the “furnace” of Figure 4. For large n there is little
loss of energy by the specular term, so any darkening of the sphere is due to the diffuse
component.

A set of polished red spheres with different phong exponents nu, nv is shown in
Figure 6. For all spheres Rs is set to 0.05 across the visible spectrum which is a typ-
ical value for plastics. In addition to anisotropic highlights and blurred reflections we
can observe strengthening of the specular reflection near the silhouette of the sphere
along with simultaneous decrease in the intensity of the red color. This effect is more
prominent in Figure 5 where three different views of the same scene are shown.

4 Implementing the model

Recall the BRDF is a combination of diffuse and specular components:

ρ(k1, k2) = ρs(k1, k2) + ρd(k1, k2), (15)

The diffuse component is given in Equation 14. The specular component is given in
Equation 10. It is not necessary to call trigonometric functions to compute the exponent,
so the specular BRDF is:

ρ(k1, k2) =

√
(nu + 1)(nv + 1)

8π

(nh)
(nu(hu)2+nv(hv)2)

(1−(hn)2)

(hk)max((nk1), (nk2))
F ((kh)) (16)

In a Monte-Carlo setting we are also interested in the following problem: given k1,
generate samples of k2 with a distribution which shape is similar to the cosine weighted
BRDF. The key part of our thinking on this is inspired by discussion by Zimmerman [?]
and by Lafortune [?] who point out that greatly undersampling a large value of the
integrand is a serious error while greatly oversampling a small value is acceptable in
practice. The reader can verify that the densities suggested below have this property.

We can just use the probability density function ph(h) of Equation 5 to generate a
random h. However, to evaluate the rendering equation we need both a reflected vector
k2 and a probability density function p(k2). It is important to note that if you generate
h according to ph(h) and then transform to the resulting k2:

k2 = −k1 + 2(k1h)h, (17)
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Fig. 5. Three views for nu = nv = 400 and a red substrate.

the density of the resulting k2 is not ph(k2). This is because of the difference in mea-
sures in h and v2 space described in Equation 8. So the actual density p(k2) is:

p(k2) =
4(k1h)
ph(h)

(18)

Note that it is possible to generate an h vector whose corresponding vector k2 will
point inside the surface, i.e. k2n < 0. The weight of such a sample should be set to
zero. This situation corresponds to the specular lobe going below the horizon and is the
main source of energy loss in the model. Clearly, this problem becomes progressively
less severe as nu, nv become larger.

The only thing left now is to describe how to generate h vectors with pdf of Equa-
tion 5. We will start by generating h with its spherical angles in the range (θ, φ) ∈
[0, π

2 ] × [0, π
2 ]. Note that this is only the first quadrant of the hemisphere. Given two

random numbers (ξ1, ξ2) uniformly distributed in [0, 1], we can choose

φ = arctan
(√

nu + 1
nv + 1

tan
(

πξ1

2

))
(19)

and then use this value of φ to obtain θ according to

cos θ = (1 − ξ2)
1

nu cos2 φ+nv sin2 φ+1 (20)

To sample the entire hemisphere, the standard manipulation where ξ1 is mapped to
one of four possible functions depending one whether it is in [0, 0.25), [0.25, 0.5),
[0.5, 0.75), or [0.75, 1.0). For example for ξ1 ∈ [0.25, 0.5), find φ(1− 4(0.5− ξ1)) via
Equation 19, and then “flip” it about the φ = π/2 axis. This ensures full coverage and
stratification.
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nv = 10000

nv = 1000

nv = 100

nv = 10

nu = 10 nu = 100 nu = 1000 nu = 10000

Fig. 6. Diffuse spheres for various exponents.
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Fig. 7. A closeup of the model implemented in a path tracer with 9, 26, and 100 samples.

Fig. 8. Fancy image.

It would be possible to do importance sample with a density close to cosine-weighted
BRDF 14 in a way similar to that described by Shirley et al [9], but we use a simpler ap-
proach and generate samples according to cosine distribution. This is sufficiently close
to the complete diffuse BRDF to substantially reduce variance of the Monte-Carlo esti-
mation.
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An Illumination Model for a Skin Layer Bounded by
Rough Surfaces
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Abstract

In this paper we present a novel illumination model that takes into account multiple anisotropic
scattering in a layer bounded by two rough surfaces. We compute the model by a discrete-ordinate
solution of the equation of radiative transfer. This approach is orders of magnitude faster than a
Monte Carlo simulation and does not suffer from any noisy artifacts. By fitting low order splines to
our results we are able to build analytical shaders. This is highly desirable since animators typically
want to texture map the parameters of such a shader for higher realism. We apply our model to the
important problem of rendering human skin. Our model does not seem to have appeared before in
the optics literature. Most previous models did not handle rough surfaces at the skin’s boundary.
Also we introduce a novel analytical bidirectional transmittance distribution function (BTDF) for
an isotropic rough surface by generalizing the Cook-Torrance model. We believe our work to be
both of practical and theoretical importance.

Keywords:
Illumination. Illumination Effects. Reflectance & Shading Models.

1 Intr oduction

The work described in this paper was motivated by the desire to model the appearance of human
skin under various lighting conditions. A good model for the reflection of light from skin has many
obvious applications in the entertainment industry, where there is a keen interest in making virtual
actors appear more life-like. However, despite the importance of this problem there are very few
analytical models that convincingly model the appearance of skin. This is probably because the
interaction of light with human skin is a very complicated physical phenomenon. Skin appearance
depends not only on the skin’s surface but also on the layer directly below it: incoming light is
not only reflected specularly (as in oily shiny skin) but is also scattered diffusely within the flesh.
This explains why traditional Phong-like surface-based reflection models fail to capture the subtle
appearance of skin. Most traditional models approximate the contributions due to the subsurface
layer inadequately using a Lambertian cosine term. A good model for subsurface scattering is also
important to model substances other than human skin such as paints and tissues. An effective skin
reflection model should ideally depend analytically on a set of meaningful parameters, such as the
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skin’s surface roughness and amount of melanin. Animators typically want to texture map these
parameters to add visual detail, such as freckles, pores or a shiny forehead.

In this paper we propose a new model for subsurface reflections based on linear transport the-
ory. This theory has matured well and has been applied to a wide range of disciplines, including
nuclear physics, the atmospheric sciences, astrophysics and computer graphics. It seems that the
only transport theoretical model for subsurface scattering in computer graphics is the one proposed
by Hanrahan and Krueger [5]. They introduce an analytical model for layers that only scatter
weakly using the single-scattering approximation. In addition, they assume a perfectly smooth
reflecting and refracting surface at the top of the layers. These approximations are, however, ill
suited for skin, since the skin’s surface is rarely perfectly smooth and multiple scattering is very
important. To address the latter problem, Hanrahan and Krueger ran a Monte Carlo simulation to
precompute reflection maps for different configurations of sub-layers. Unfortunately, the Monte
Carlo method converges very slowly, so handling a wide range of interesting skin parameters re-
quires huge amounts of data to be computed. Because the model of Hanrahan and Krueger did not
satisfy our needs, we decided to derive our own model in a more general setting.

We first turned to the abundant literature on the subject from other fields. Most relevant to our
problem is the literature in the medical sciences studying the optics of skin for such applications
as non-invasive surgery. We first consulted the review articles [23] and [24]. The latter article
discusses an approximation which is too coarse for our purposes. The first reference from a Rus-
sian journal only mentions Monte Carlo methods and the so-called adding-doubling method. We
have already drawn attention to the drawbacks of the Monte Carlo approach. The adding-doubling
technique was used by Prahl and co-workers to extract parameters from skin measurement [18]
and is based on earlier work in astronomy [6]. This technique, however, is iterative in nature and
does not handle rough surface boundaries. At this point we turned to the atmospheric sciences.
The problem addressed there is how to compute the global interchange of radiation between the
atmosphere and the ocean. The ocean is very much like skin since it has a rough boundary and
light is scattered below it. We found a very attractive model based on the discrete-ordinate ap-
proximation of radiative transfer [3]. In particular, Stamnes and co-workers developed a general
solution framework for the atmosphere-ocean radiative problem [8, 21]. Unfortunately their model
does not handle rough surfaces. It seems that the “state of the art” model in this area resorts to a
Monte Carlo simulation to determine the effect of a rough surface [14].

After this review, we decided to extend the discrete-ordinate approach of Jin and Stamnes
[8] to include rough surfaces. We first required a good analytical model for the Bidirectional
Transmittance Distribution Function (BTDF). We are aware of only one such model in computer
graphics based on the wave theory of light [7]. Unfortunately this model is fairly complex, so
we derive a simpler one in this paper for the first time. Our model is an extension of the BRDFs
of Cook-Torrance [4] and of van Ginneken et al. [25]. Extending a reflectance model to include
transmittance may seem straightforward at first, but we encountered some subtle issues. The first
contribution of this paper is to resolve these issues. The second contribution is a general discrete-
ordinate solution for a scattering layer bounded by rough surfaces. Our model is, therefore, of
interest to computer graphics and potentially to other fields. We show how to efficiently solve
the problem by a suitable “diagonalization” of the “transfer matrix.” We use the machinery of
Fourier transforms and eigenanalysis to perform this task. To build practical reflection models for
computer graphics, we fit low-order splines to our discretized functions. Our approach is orders
of magnitude faster than Monte Carlo methods, requires less memory, and does not suffer from
any noisy artifacts. The parameters of our model can also be texture mapped without the need for
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Figure 1: Definition of a direction ���������
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any recomputations. It is therefore ideally suited for an implementation as a shader in a standard
rendering package.

We briefly mention here that the discrete-ordinate method has been used before in a different
context in computer graphics. Both Max and Languenou et al. used this technique to compute the
scattering in non-constant densities such as clouds [11, 13]. Their methods, however, do not lead
to analytical reflection models since they consider arbitrary densities. They also do not address the
problem of rough surfaces refracting and reflecting light at the boundaries. The same comments
apply to the method of Kajiya and Von Herzen [9] and the radiosity-based approach of Rushmeier
et al. [20].

The rest of the paper is organized as follows. The next section details the physics involved
and introduces the equivalent discrete problem. In Section 3 we show how to solve the discrete
problem efficiently. Section 4 presents a derivation of our new BTDF. Section 5 clarifies many
implementation issues and discusses the corresponding “skin shader”. In Section 6 we present
some results and compare them to experimental data, while in Section 7 we conclude and discuss
future research. Material of a rather technical nature is addressed in the appendices.

1.1 Notational Preliminaries

Much of the material in this paper can be presented more elegantly using a “matrix operator ap-
proach” [17]. Many relations are expressed more compactly without indices in vector and matrix
form. In this paper all vectors are denoted by bold lowercase characters:  . The elements of  are
denoted by the corresponding italicized letter: ��� is the � -th component of  . An element of a vec-
tor should not be confused with an indexed vector such as �� . A matrix is denoted by a bold upper
case character such as � and its elements are denoted by ����� � . The transpose of � is written ��� .
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2 Discretizing the Physics

2.1 Physical parameters

The physical quantity corresponding to a visual stimulus is the radiance � . This quantity has units
of power per unit area per unit solid angle and gives the amount of radiant power flowing from a
particular position in a particular direction. Following Hanrahan and Krueger [5] we assume that
the skin depth is along the � -direction and that the skin’s properties are uniform in each ��� -plane.
In this setting it is more convenient to use the dimensionless optical depth � rather than the depth� , where � � ���	�
and � is the mean free path of a photon in the medium. Consequently, the radiance is a function
of optical depth and direction. We represent a direction by an ordered pair 
 � � � 
 ���
	�� where� �������� is the cosine of the elevation angle � and 	 is the azimuthal angle (see Figure 1). In the
following we always assume that the cosine ����� . We therefore denote a downward direction by� ����� � ���
	�� . The use of the minus sign is purely notational in this context.

The optical properties of the skin are modeled by two parameters that describe how light scat-
ters at each point. They are the albedo � and the anisotropy factor � . The albedo gives the fraction
of light that is scattered versus absorbed and is typically close to one for skin. The distribution of
scattered light is defined by a phase function � . This function gives the probability that a photon
travelling in a direction ��� is scattered in another direction � . We rely on the Henyey-Greenstein
phasefunction, a useful model frequently seen in the optics literature:

� � � � � � ��� � � ���
� ��� � � �! � ����#" �%$%& �('

Here " is the angle between the directions �)� and � . The anisotropy factor �+*-, � � ��. models how
much light is scattered forward. For � �/� the medium scatters isotropically, while for � � � the
scattering is in the forward direction only. Scattering in skin is typically highly anisotropic with
values of � in the range , � ' 0 �1� ' 2�3 . . Both the albedo and the anisotropy factor of skin depend on
depth and wavelength. It is interesting that the popularity of the Henyey-Greenstein phase function
stems from the fact that it has a very simple expansion in terms of the associated Legendre functions
(see Appendix C). This is rarely mentioned in the computer graphics literature. The expansion
coefficients are the powers of � . The higher the anisotropy, the more terms are required in the
expansion. We associate with the phase function a linear scattering functional:

465 �87 � � � � � � �9	:+;=<?> � � � � � � � � � � � � � �A@ � � � (1)

where the integration is over all possible directions.
The reflection and refraction at the skin’s boundaries are modeled as isotropic rough surfaces.

In our model we assume that the skin has a uniform index of refraction B � and is bounded above
and below by media having indices equal to BAC and B $ , respectively. To model the reflection,
we use a variant of the Cook-Torrance model [4] proposed by van Ginneken et al. [25]. For the
transmission we derive a new model in Section 4 since we could not find a satisfactory one in the
optics literature. Both the transmission and reflection models depend on a roughness parameter D .
The BRDF and BTDF are denoted by E � � � � � �F� � and G � � � � � �F� � , respectively, for light coming from
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Figure 2: Nomenclature for the BRDFs and BTDFs.

material �F* � �  ��� arriving at material � * � �  ��� , where, for example, E�C � models the reflection off
of the top surface. This nomenclature is clarified in Figure 2. We associate with these distributions
linear reflection and transmission operators:

� � � 5 �87 � � � 
 � � � ; � > E � � ��� � � � 
 � � � � � ��� � � � � � @ � � � (2)

� � � 5 �87 � � � 
 � � � ; � > G � � � 
 � � � 
 � � � � � � 
 � � � � � @ � � � (3)

where the integration is over the positive hemisphere and the signs depend on the BRDF or BTDF
considered, e.g., E	C � has opposite signs from E � C as is evident from Figure 2.

2.2 Equation of Transfer

An equation for the radiance within the skin is obtained by considering its variation in an infinites-
imal cylinder aligned with the direction � . The change is equal to the amount of light scattered
into this direction minus the light absorbed and scattered out of this direction:

� � @ �@ � � � � � 465 �87 � (4)

where
4

is the scattering operator defined in Equation 1. To completely specify the problem, this
equation requires boundary conditions at the top and the bottom of the skin layer. At the skin’s
surface ( � � � ) the downwelling radiance is equal to the transmitted radiance plus the internal
reflections of the radiance coming from the internal layer:

� � � � � � � � G C � � � �	� � � � � � � � C 5 �87 � � � � � � ' (5)

Similarly, if we assume there are no sources below the skin, the upwelling radiance at the bottom
of the layer ( � � ��
 ) is given by

� � ��
 � � � � � � $ 5 �87 � ��
 � � � ' (6)

Once Equation 4 is solved using these boundary conditions, the BRDF and the BTDF due to
scattering in the skin’s layer are equal to

E� � � �	� � � � � � � C 5 �87 � � � � � � ��������� G� � � �	� � � � � � � � $ 5 �87 � ��
 � � � � � ��� �
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respectively. In addition, the reflection due to an ambient light source of radiance is modeled by
integrating the skin’s BRDF over all incident directions � � � :

E � � � � � ; � > E� � � �	� � � � ����@���� '
The total amount of light reflected off the skin is the sum of the part directly reflected by the
surface, the ambient term and the radiance leaving the subsurface layer:

E������ � � � � E C � � � �	� � � � � E � � � � � E� � � �	� � � � '
In Section 4 we provide a model for E�C � (and the other E � � and G � � ) while the next section describes
a method of solution for E  and G� .
2.3 Angular Discretization

We discretize the angular part of Equation 4 in two steps. Because we assume that the surface
roughness is isotropic and that the skin is horizontally uniform, we can decompose the azimuthal
dependence of the radiance into a cosine series:

� � � � � ��� ��
�
	 � � � � � � � � ������ � 	 � 	 �
� ' (7)

Next we discretize the cosines � into  � discrete samples (see Appendix A for how they are
chosen): � C � � � ���� � ��� � � � C � � � � ���� � � ��� ' (8)

These values are also known as “ordinates,” hence the name “discrete-ordinates” to refer to this
type of discretization. The corresponding values of the discretized radiances are stored in a  �
vector �

� � � � ��� � � � � � � C �
���� � � � � � � � ��� � � � � � � ���� �
� '
As shown in Appendix A, the scattering operator in Equation 4 is discretized into a collection of� � � matrices � � ( � � � ���� �
� ), each of size  ���  � . These discretizations convert the
transfer equation into � � � decoupled linear ordinary differential vector equations:

��� @ � � � � �@ � � � � � � � � � � �
�
� � � �
�

where � is a diagonal matrix containing the samples of Equation 8. The last equation can be
written more compactly as @ � � � � �@ � � ���

�
� � � �
� (9)

where ��� � ��� C ��� � � � � and � is the identity matrix. Equation 9 is the main equation of this
paper. In the next section we show how to solve it efficiently.

3 Dir ectSolution of the DiscreteProblem

This section is inspired by the work of Jin and Stamnes [8]. However, our compact vector/matrix
notation greatly simplifies the presentation. Our approach is also more general, since we consider
surfaces of arbitrary roughness at the boundaries.
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3.1 Diagonalization

We assume that the skin is composed of a layer with constant optical properties sandwiched be-
tween two isotropic rough surfaces. In order to simplify the notation in this section, we will drop
the dependence of all quantities on the index “ � ”. This is justified because the equations for dif-
ferent terms in the cosine expansion are entirely decoupled. In the skin the radiance satisfies the
following equation: @ � � � �@ � � �

� � � � '
Ignoring the boundary conditions for the moment, we see that this is a homogeneous vector or-
dinary differential equation. Such an equation is solved efficiently by putting the matrix � into
diagonal form. Indeed, in diagonal form the equations are decoupled and can be solved analyti-
cally. Diagonalizing � is equivalent to computing its eigenvalues and eigenvectors:

� ������� � C '
Here � is a diagonal matrix containing the eigenvalues of � :� � ��� ��� �
	 C ���� ��	�� � � 	 C ���� � � 	�� �
where 	 �� � for � � � ���� � � (see Appendix E) and � contains the eigenvectors stored column-
wise. If we let � � � � be the transformed radiance � ��� � C � , then@ � � � �@ � ��� � � � � '
The exact solution to this differential equation is given by:� � � � ������� � � � (10)

where the exponential is simply the diagonal matrix whose elements are the exponential of the
elements of � � . The vector

� � in Equation 10 is to be determined from the boundary conditions.
The radiance in the layer is then obtained by inverting our earlier transformation:� � � � ��� � � � � ��������� � � ' (11)

Our next step is to find a vector
� � satisfying the boundary conditions.

3.2 Solving the Discrete Problem: Boundary conditions

We have just shown that the radiance in each layer can be solved for directly in terms of the
eigenvectors and eigenvalues of the transfer matrix. We can rewrite Equation 11 separating the
parts corresponding to upward and downward directions:� �� � � �� � � � ��� � � � � � �� � � � � ��� � � � � ��� � � � � � �� � � (12)

where each of the
�

matrices contains half of the exponentials:� � G � ������� � '
7



The goal in this section is to compute the unknown vectors
� �� and

� �� given by Equations 5 and
6. First, let � � � and � � � denote the discrete versions of

� � � and
� � � respectively. Since they are

defined only over the positive hemisphere they are of size � � � . The top and bottom boundary
conditions in terms of these matrices are� � � ��� � � C � � � � � � C �

� � ��� ����� (13)� � � ��
 � � � � $ � � � ��
 � ' (14)

The vector
� � represents the incident radiances, and for a directional light source is zero for each

entry except for the entry corresponding to � � � where it is equal to one. By substituting Equations
13 and 14 into Equation 12 and rearranging,� � � � � � C � � � � � � � C � �� � � � � � $ � � � � � ��
 � � � � � � � $ � � � � � � ��
 ���

� � ��� �� � � �
� C � � �� � '

This system, however, is ill-conditioned because the matrix
� � � 
 � has entries that grow exponen-

tially with ��
 . Fortunately, we can easily fix this problem by setting
� �� � � � � ��
 ���� �� and solving

for ���
� �� � � �� � instead [21]. The new system becomes:� � � � � � � C � � � � � � ��
 � � � � � � C � �� � � � � $ � � � � � � � � $ � � � � � � ��
 ���

� �
� ��� �� � � �

� C � � �� � ' (15)

This linear system is well behaved and can be solved using any standard linear solver. Once the
solution is obtained, the upward radiance at the top and the downward radiance at the bottom of
the layer are given by: � � � ��� � � � � � � ��
 ���� �� � � � � �� ������ � � ��
 � � � � �� �� � � � � � � ��
 � � �� �
respectively. These are the radiances just inside the rough surfaces of the skin layer. To compute
the radiances exiting the surface, we have to multiply these radiances by the transmission matrices
� � C and � � $ , respectively: �

� � � � C �
� � ��� ����� �

� � � � $ � � � ��
 � ' (16)

3.3 Summary

First we restore the subscript “ � ” to indicate that the radiances of Equation 16 correspond to a
single term in the cosine series. Consequently, the complete description of the radiances is given
by the following vectors �

� � � ���� �
�
� � � ����� �

� � � ���� �
�
� � � '

These radiances are for a particular incoming direction � � � � � � ��� �1��� . To get a discrete de-
scription of the BRDF E  of the skin layer we sample the incoming directions at the ordinates� C ���� � ��� . The discrete representation of the BRDF is, therefore, a collection of � � � matrices
� � of size � � � ( � � � ���� �
� ). The � -th column of this matrix consists of the vector

�
� � �

computed for the incident direction � � � � �1��� , � � � ���� � � . In a similar fashion we build a set
of matrices � � for the BTDF G  of the skin layer ( � � � ���� �
� ). A high level description of the
algorithm that computes these matrices is given in Figure 3.
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ComputeRT:
For � ��� ���� �
� do

Compute the scattering matrix � � (Appendix A)
Compute the reflection and transmission matrices � � � and � � � (Appendix D)
Compute eigenstructure of � � (see Appendix E)
For � � � ���� � �

Solve linear system for incoming direction � � (Equation 15)
Transmit radiances out of the layer (Equation 16)
Set the � -th columns of � � and � �

next
next

Figure 3: Summary of our algorithm.

parameter num. of samples samples
�

10 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9D 9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9� 7 0.1 0.5 0.75 0.8 0.9 0.999 1.0� 10 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Table 1: Samples used for each of our parameters.

We have precomputed these matrices for different values of the parameters that model the skin
layer. These parameters are the transparency

� � � � ��� , the albedo � , the anisotropy factor � of
the phase function, and the roughness D of the surfaces bounding the skin layer. Each parameter
is dimensionless and takes on values between zero and one. The precomputations were done for
all possible combinations of the parameter values listed in Table 1. The ratio of the indices of
refraction is kept constant throughout: it is set to � ' 9 , roughly that of human skin. The number
of ordinates � was determined from the discretizations of the BRDF and the BTDF of the skin’s
surface (derived in the next section). For a roughness D � � ' � we neededed � � ��� ordinates
while for other values � �  9 was sufficient. The number of cosine series is always set to twice
the number of ordinates: � �  � [8].

Because the scattering matrix depends only on � and � , we first computed the eigenstructures
for all

0 � � � � 0 � possible values of the parameters. We used the RG routine from EISPACK
[16] to compute the eigenvectors and eigenvalues. We encountered no numerical problems except
when the albedo was exactly one. An easy fix is simply to set the albedo to a value almost equal to
one, i.e., � ��� ' 2�2�2�2�2�2 . Once the eigenstructures were available we used them to precompute the
reflection E  and transmission G  of the skin layer for all possible combinations of the samples listed
in Table 1. We used the routine DGESL from LINPACK to solve the linear system of Equation 15.

The precomputation generates a huge data set. Our next task was to compress the data using
well chosen approximations. We first experimented with the elegant non-linear representation
of Lafortune et al. [10]. We did get some good matches using three cosine lobes. However,
in many cases the non-linear least square solver got stuck in local minima. For these reasons
we adopted a less efficient but more straightforward compression scheme. First, not all cosine
terms need to be included. For the reflection at the top of the layer we found that in general,

3
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T=  0.0       0.05            0.1            0.3            0.9
g=0.8   Ω=1.0   σ=0.5

Varying the transparency of the layer

θ  =     85             60             45            30         00
g=0.8   T=0.2   Ω=1.0   σ=0.5

Varying the incident angle

g=     0.0           0.2            0.4            0.6             0.8
T=0.2   Ω=1.0   σ=0.5

Varying the anisotropy of the layer

Ω =     0.1                 0.5                         1.0

g=0.8    T=0.2   σ=0.5

Varying the albedo of the layer

σ =    0.1                  0.2         0.3          0.5          0.9 
g=0.8    T=0.1   Ω=1.0

Varying the surface roughness

Ω =       0.1                    0.5                     1.0
g=0.8    T=0.0   σ=0.5

Varying the albedo of the layer
(rescaled for comparison of shape)

Figure 4: Cross-sections of the reflection and transmission functions of the skin layer for different
values of the parameters.

terms ( � � 9
) were sufficient, while for the transmission at the bottom � 3 ( � � � 9 ) terms were

required. These numbers were obtained by visually comparing the data to the approximation. We
further compressed the data by fitting a cubic Bezier surface to the data stored in the reflection
(resp. transmission) matrix � � (resp. � � ). We constrained the control vertices to respect the
symmetry of these matrices (Helmholtz reciprocity).

In Figure 4 we demonstrate the effect of our parameters on the reflection and transmission
functions. The simple shapes of the lobes first led us to believe that they might be modeled by
simple analytical expressions. The variation with each parameter is, however, quite subtle and
none of our analytical estimations could handle all variations at the same time. Analytical solutions
are rare when multiple scattering is included. Even the simplest case of a semi-infinite constant
medium with isotropic scattering does not admit an analytical solution [3]. The distributions are
clearly different from a simple constant Lambert term. The main difference is that the reflected
lobe is flatter and has a bias towards the forward direction. This is consistent with some of the
experimental data in [12]. Our distributions also vary from those of Hanrahan and Krueger [5].
Because they assumed a smooth surface, their distributions tend to zero for glancing angles. We
get the same behavior asymptotically when the surface roughness tends to zero (see Figure 4). The
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shape of their distributions corresponds to the plots with a low albedo in Figure 4.
To further validate our model we wrote a simple Monte Carlo simulator, compared the results

for a set of different parameters and found good agreement. Of course we could not verify this for
all possible values listed in Table 1 because of the inefficiency of the Monte Carlo technique.

4 Reflectionand Refraction fr om RoughSurfaces

In this section we derive BRDF and BTDF models for an isotropic random rough surface. As in
van Ginneken et al. [25] we derive these models directly from a statistical model of the height field.
Indeed, our BRDF is essentially the same as theirs. Our main contribution is of course the new
BTDF model. To the best of our knowledge, a similar model has not appeared before in the optics
literature. We have chosen to derive the BRDF here as well for two reasons. First, it makes the
derivation easier to follow. Second, since we need an explicit expression for the BRDF, it makes
the paper self-contained.

We assume that our surface is an isotropic gaussian random height field [1]. The probability
that a normal � � lies within an infinitesimal solid angle @ � � � � @ � ������ � �
�1@ 	 � � is given by the
Beckmann function [1]:

� � � � � @ � � � � : D � ���� $ � � �����
� � � ��� � � � D � � @ � � � (17)

where D is the RMS slope of the surface. Let the surface be illuminated by a directional source
of irradiance � � of direction � � � � �������� �
	 �
� . For each direction � � , resp. � � , there is a unique
normal � � that will reflect (resp. refract) the incoming light in the direction � � (resp. � � ). In the
case of reflection, this vector is simply the vector halfway between � � and � � . For refraction it
is the (normalized) vector equal to the sum of � � and � � � , where � is the ratio of the indices of
refraction above and below the surface. Notice that � can be smaller than � when computing G � C ,
for example. In cases where � � � it’s possible that no normal exists that refracts the incoming
light in the direction � � . This happens whenever � � lies outside of the cone of refraction. In this
case the BTDF is simply zero for that direction.

The incoming power at a surface element @
	 with normal � � is equal to the incoming irradiance
times the projected area: � � � � � ������ �� @
	 �
where ������ �� is the cosine of the angle between the normal and the incoming direction. The amount
of power that is reflected and refracted is determined by the Fresnel factor � � ������ �� � � � [2]. Indeed,
a fraction � of the power is reflected while a portion � � � � � is refracted. The radiance reflected is
by definition the power reflected per solid angle and foreshortened area. To get the total radiance
reflected into direction � � , we multiply the radiance reflected by a point of the surface with normal� � by the Beckmann probability function defined in Equation 17:

� � � �� � ���� � �� � � � � �A@ � ������� � @ � � '
The solid angles @ � � and @ � � are not independent. This can be understood intuitively: by varying
the normal in the cone @ � � we get a corresponding variation around the reflected direction � � . The
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size of this variation is exactly the factor which relates the two solid angles. The precise relation
between them was cited by Torrance and Sparrow [22]:@ � � � 9 ����(� �� @ � � '
Nayar provides an elegant geometric proof of this result [15]. In Appendix B we give an alternative
proof which easily generalizes to the case of refraction to be discussed below. Consequently, the
BRDF for a surface of roughness D and with ratio of indices of refraction � is:

E � � � ������ �� � � � � � � � �9 ���� � � ���� ��� '
This result, when multiplied by a shadowing function, is essentially the Cook-Torrance BRDF.

We now derive the BTDF in a similar fashion. As in the reflected case, the total radiance
refracted into a direction � � is given by:

� � � � � � � � � � ���� � �� � � � � � @ � ������� � @ � � '
The relation between the solid angles @ � � and @ � � is, however, very different. At first we did not
pay too much attention to this relationship and simply assumed @ � � ��@ � � . But when we compared
our analytical model with a Monte Carlo simulation for validation, we found large discrepancies.
Finally, after a careful analysis of other BRDF derivations [4, 25] we realized the importance of
this relation. In Appendix B we prove that:

@ � � �
� ������ �� ��� ���� � � �� � � � � ��� �

� � ���� � � �� � � � � � @ � � ��� � ������ �� � � � ������ �� @ � � '
It is interesting to note that for � � � this factor is zero, i.e., when there is no surface, light travels
unperturbed in a straight line. With this factor the BTDF is equal to:

G � � � � � � ������ �� � � � � � � � � ������� � ���������� � ������ �� � � � '
This last expression is the main result of this section: a new BTDF model for an isotropic rough
surface. We also multiply this function by the shadowing function proposed by van Ginneken at
al. [25]. We prefer this shadowing function over the one used by Cook and Torrance [4] since it is
consistent with the underlying model for the surface.

The BRDF and the BTDF are shown for different ratios of indices of refraction � and roughness
values D in Figure 5. The top figure corresponds to a ratio � � � ' 9 which is that of skin. These
plots correspond to the functions E�C � , G C � , E � C and G � C of our skin model. As mentioned above we
have validated our derivation using a Monte Carlo simulation. Whether they are a good model for
rough surfaces is another matter to be settled by experiment. At least, Cook and Torrance reported
good agreement with experiment for the function E�C � [4].

5 The Skin Shader

The main motivation behind our work was to create good skin shaders. It is clear that our illumi-
nation model has many other applications. For example, Hanrahan and Krueger used their model
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η = 1.4 η = 20η = 10η = 5

σ = 0.1

σ = 0.3

σ = 0.7

σ = 0.5

Varying the roughness σ and the ratio of indices of refraction η

BRDF and BDTF at the skin's surface      σ=0.5     η=1.4

Figure 5: Our new BRDFs and BTDFs for a rough surface. The distributions are rescaled to fit in
the figure.

parameter type typical values
epidermis transparency (RGB) depends the race
dermis albedo color (RGB) � � ' 2�2 � �1� ' 2 0 2 �1� ' 2 9 ���dermis anisotropy color (RGB) � � ' �

� � �1� ' �
3 9 �1� ' �  ���surface roughness scalar � ' � � � ' 2

Table 2: Parameters of the skin shader.
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dermis

epidermis

Figure 6: The skin is composed of a rough surface, the epidermis and the dermis. Most of the
scattering occurs in the dermis.

to render leaves [5]. As shown in Figure 6, human skin consists of a rough surface and two layers
below it: the epidermis and the dermis. The epidermis is a thin layer just below the skin’s surface
which only scatters weakly and mainly absorbs light. This layer determines the skin’s general tone
and corresponds to someone’s “race”. Below the epidermis is the dermis where all the scattering
occurs. This layer is almost completely opaque (

� � � ). The scattering there is characterized by
a high albedo ( ��� � ) and high forward scattering ( ��� � ' � ). The shape of the distribution of
reflected light depends only on the scattering in the dermis. The effect of the epidermis is simply
to scale this distribution. Table 2 lists the parameters of our model. We used the precomputed data
mentioned in Section 3.3 to evaluate our shader. We employed a simple quadri-linear interpolation
for parameter values different from the ones listed in Table 1. Consequently, all of these parameters
can be smoothly texture mapped to achieve many different effects.

We have implemented our reflection model as a shader plugin in our animation software
MAYA. The plugin is available for free on our company’s web page C . The web page also provides
more information on the parameters of our skin shader. Several of our customers have recently
started to use our shader in production with good results.

Figure 7 shows several examples of human heads rendered using our new skin shader. Figure
7.(a) compares our model (right) to a Lambert shader (left) and the Hanrahan-Krueger (HK) model
(center). Our model seems to be a blend between these two models, which is consistent with the
plots in Figure 4. Unfortunately, the comparison is necessarily very vague. Indeed, we manually
tried to find a set of parameters for both the Lambert shader and the HK model which was as close
as possible to our results. In particular, we had to “brighten up” the HK model since it assumes
single-scattering. Figure 7.(b) shows our model illuminated by different area light sources. Notice
also that we texture mapped both the albedo and the roughness of the lips. Figure 7.(c) is similar
for a male head. Finally 7.(d) demonstrates a non-photorealistic application of our shader (notice
that the surfaces have been bump mapped).

6 Conclusionsand Futur eWork

In this paper, for the first time, we compute the reflection and the transmission of light through a
skin layer bounded by rough surfaces. We achieved this through a discretization of the equation of
radiative transfer. We were able to efficiently solve the discrete problem using Fourier transforms
�
http://www.aliaswavefront.com by following “community” and “Download”.
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(a) Comparison of our shader (right) with a Lambertian shader(left) and the Hanrahan-Krueger model (center)

(b) Head under different lighting conditions. Flash-like area source (left) and two area light sources (right)

(c) Another head model with lips and freckles
     texture mapped.

(d) Non-photorealistic application of our model.

Figure 7: Renderings created using our new skin shader.
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and eigenanalysis of the scattering matrix. Our model takes into account multiple anisotropic scat-
tering and also handles reflections and refractions at the rough boundaries. To the best of our
knowledge a model of this generality has not appeared before in computer graphics or in any of
the related fields such as the atmospheric sciences. Our model is therefore of potential interest to
these other fields as well. We have precomputed the distributions of reflected and transmitted light
for different parameters and used an approximation of that data to build a skin shader. Also, for
the first time we derive an analytical model for the Bidirectional Transmittance Distribution Func-
tions (BTDFs) for a rough surface following earlier derivations for the Bidirectional Reflectance
Distribution Function.

We have compared our solutions for a subset of our parameters with the output of more expen-
sive Monte Carlo simulations. There was good agreement in each case. We are therefore confident
that we have solved the physical formulation of the problem. The question of whether our mod-
els match reality has to be settled by comparing them with experimental data. We found a general
agreement with the Cornell data [12], however, we feel that more comparisons are needed. Assum-
ing our solver to be bug-free, it would be interesting if there were large discrepancies between our
model and experiment. This would suggest that the linear transport theory is perhaps inadequate
for this problem. On the practical side, our animators appreciated our new skin shader as it gave
them an effect previously possible only with texture mapped Phong-like models. Possible future
effects they have requested include “glowing ears”, better skin bump-maps, tiny hairs, etc, which
are of course hard to model using a shader alone. We are currently investigating how to achieve
these effects.

There are many obvious extensions to our model. First, it is easy to include different scattering
layers in our model, and our implementation can handle different layers. However, we found
that one layer was good enough for the skin shader. To keep this paper as readable as possible,
we decided not to add another index referring to the layers. The model can also be extended to
handle anisotropic surfaces: simply use Fourier series instead of Cosine series for the azimuthal
dependence of the radiances.

We intend to make our data publicly available in the hope that it might lead someone to find a
better approximation scheme. Ideally, we would like to have a simple analytical model that fits the
data. This would be of great practical and theoretical interest to many applied fields.

A Details: Angular Discretization

In this appendix we provide the missing details of Section 2.3 that lead to explicit expressions for
the matrices � � .

First, we expand the phase function into a cosine series as well:

� � � � � � � � ��
�
	 � � � ��� � � � � ���� � � 	 � 	 � �
� (18)

where the � � are functions of the anisotropy factor � and the associated Legendre functions as
shown in Appendix C. If we substitute Equations 7 and 18 into Eq. 4 we get the following � � �
equations ( � � � ���� �
� ):

� @@ � � � ��� � � � � ��� � � � � ;
� C
� C � � ��� � � � � � � ��� � �A@�� � � (19)
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where � � � � � ��� � � � � �9
and

� ��� � is the Kronecker symbol. We now discretize the problem further by approximating the
integrals in Equations 19 using a quadrature:

;
� C
� C � ��� � � @�� � �

��
� 	 C � � 5�� � � � � � � � ��� � � 7 �

where � � are the weights and � � � � are the ordinates of the quadrature. With this approximation
Equation 19 becomes a set of linear equations:

��� @@ � � � ������� � � � ������� � � � ��
� 	 C � � 5 � � � � � � � ��� � � � � � � � � � � � ��� � � ��� � � � ��� � � 7

� ��� @@ � � � � � ��� � � � � � � ����� � � � ��
� 	 C � � 5 � � � � � � � � ��� � � � � � � � � � � � ��� � � � ����� � � ��� � � 7 '

Since � � � � � � � ��� � � � � ��� � � � ��� � and � � ��� � � ��� � � � � � � � � � � ����� we introduce the following
two � � � matrices:

� 	 � ��� � � � � � � � � � � ��� � � ��� � � � � � � � � ��� �����
�	� � ��� � � � � � � � � � � � � � � ��� � � ��� '

Consequently, recalling the vector notations introduced in Section 2.3:

��� �
� ��
 � ��� �� � 
 � � '

B Relating �� to ����
Computing the relationship between the two differentials @ � � and @ � is mathematically equivalent
to computing the Jacobian of the change of coordinates � ��� � . In this appendix we compute
the Jacobians for both the reflected and the refracted solid angles. We compute the change of
coordinates in three steps: � � � � � � � � � � � � � � � � � � � � � '
The relation between the spherical and cartesian coordinates is well known and given by

@ � � @ � � � � � @ � � ����� @ � @ � � � @ � '
Following the approach of Nayar et al. [15] we assume without loss of generality that the solid
angle of the normal @ � � is centered along the normal � � �1� � � � . We also assume that the source is

coming from the direction ��� � �1��� , or in cartesian coordinates  � � � � � � � �� �1� � ��� � . See Figure
8. Let � � � � � � � � � � � � � � � � � � � � �� � � �� �
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Figure 8: Solid angles involved.

be a normal in @ � � @ � � . Then the reflected and refracted directions are equal to� �  � �   � � � �  � �����

� � � � �   � � � � �   � � � � � � � ��� � �  � �
respectively. The transformation from the normal to the reflected vector corresponds to a change
of coordinates � � � � � � � � � � � � � , where

� �  � � � � � �� � � � ��� � � � � �� � � �� � � � � � � � � ��� �  � � � � � �� � � � ��� � � � � �� � � �� � � � '
The Jacobian of this change of coordinates at � � � � � � � � � � �1��� is easily calculated to be equal to:

� �������
�
	�
	
� �
	�
���
��
	
� �
��
�� �����

�������
 ��� ��  ��� �����

� 9 � �� '
Therefore, ���1@ ��� @ � @ � � 9 � �� @ � � @ � � � 9 � �� @ � � '
In other words, @ ��� 9 ��� @ � � �
which agrees with Nayar’s result [15]. Our derivation might seem unnecessarily complicated com-
pared to that of Nayar [15]. However, our derivation has the merit that it can easily be applied to
the refraction problem as well. The Jacobian of the change of coordinates corresponding to the
refraction at � � �1��� is equal to

� � � �������
��� � � � �� ��� � � � �����

������� � � � � � �
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where � � � � � �� � � � � �
is the cosine of the refracted direction. Again we have the chain of relations�

�
� � @ ��� @ � @ � � �

� � ����� � � � � � @ � � @ � � � �
� � � ��� � � � � � @ � � '

Therefore, @ ��� ��� �� � � � � �
� � �

@ � � �
as advertised in Section 4.

C Representationof the PhaseFunction

The Henyey-Greenstein Phase function has the nice property that it can be expanded explicitly in
a cosine series given by Equation 18. The coefficients in the expansion are expressed in terms of
the associated Legendre functions [3]. This explains why this phase function is so popular in the
radiative transfer literature. The expansion follows from the following result [6]:

� � ����#" � � ��
�
	 �

�  � � � � � � � � � ����#" �
�
where

� � is the Legendre polynomial of degree � . From a well known relation between the Legen-
dre polynomials and the associated ones � , we see that the coefficients in the expansion of Equation
18 are given by:

� � ��� � � � � ���  � � � � � �
��� 	 � �  B � � � � � � B � � ���

� B � � ��� � �� ��� � � � �� ��� �
�
where

� �� � � � are the associatedLegendre functions[19].

D DiscreteRepresentationof the BRDF and BTDF

Let � � �F� � � � be one of our BRDFs or BTDFs. We then want to compute the coefficients � � in the
cosine series:

� � � � � � � � ��
�
	 � ���

��� � � � � ������ � 	 � 	 � � '
Unlike the phase function in Appendix C, we cannot express these coefficients analytically for the
BRDF and BTDF derived in Section 4. For the given set of ordinates � C ���� � ��� we approximate
the integrals:

� � ����� � � � � � ; � >� � � 
 ��� �1��� 
 � � �
	�� ���� � 	 @ 	 �
for � � � ���� �
� and B ��� � � ���� � � . The signs in the integrand depend on the BRDF/BTDF
being computed. The discrete representation of the linear operators associated with � are then
given by matrices � � whose elements are

� � � ��� � � � � � ����� � � � � '	
This relation was used in [9], for example.
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E Computation of Eigenvaluesand Eigenvectorsof Eq. 9

We seek a  � -dimensional vector ��� ����� � and a scalar 	 that satisfy	 � �
� � � � ��
 ���� 
 � � �

� � '
Equivalently, 	 ��� � ��� � � 
 � � � ��� � � �	 ��� � � � � � 
 � � � ��� � ���

hence 	 � ��� � ��� � � 
 � � � � 
 � � � ��� � ��� '
Thus we have reduced the problem to size � . We can solve this problem using standard numerical
methods to get � eigenvalues �FC ���� � � � � � and � eigenvectors �(C ���� � � � . Now, let 	 � �
�

� � and 	 ��� � � � � � � 
 � � � , and


�� � � � � � � � � � �����  �� � � � � � � � � � '

One can verify that these definitions provide eigenvalues and eigenvectors for our original problem:	 � �  ��
 �� � � � ��
 ���� 
 � �  �� �� � ����� � 	 � �  ��


�� � � � ��
 ���� 
 � �  �� �� � '

These results can be written more compactly using the following matrices:� � � �  �C ��  �� � � � � � �  �C ��  �� � ����� � � � ��� ��� �
	 C � '='=' ��	�� � '
We obtain the following matrices of eigenvectors and eigenvalues:� �

� � � � �� � � � � ����� � �
� � � �

� � � � � '
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